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Abstract 

In heterogeneous disordered materials, a straight crack front experiences toughness fluctuations during its 

propagation that generate geometric fluctuations. Their longtime statistical behavior has been studied by Lazarus et al. 

(JMPS,2008) using Bueckner-Rice weight function theory. In particular, the evolution of the auto correlation function, power 

spectrum and variance of the front fluctuations have been derived. The aim here is to compare these results to some 

experiments performed on transparent plexiglas blocks with the same apparatus as in Schmittbuhl and Maloy (PRL, 1997) 

by measuring the amplitude evolution of the crack front fluctuations in addition to the self-affinity roughness parameters.  
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1 Introduction 

In a perfectly ideal homogeneous material, an 

initial straight crack front remains straight during 

propagation. But in an heterogeneous disordered 

materials, it becomes rough. The aim of the present paper 

is to derive an analytical description of the evolution of 

this roughness and to compare it to experimental results. 

The assumption of quasi-static brittle crack propagation 

will be done. Among the experimental works, one may 

cite on the one hand, the pioneer work of Daguieretal. [2] 

in which the crack front is obtained postmortem, the 

crack surface being marked by ink and on the other hand, 

the works of Delaplace, Maloy and Schmittbuhl [8,3] in 

transparent Plexiglas in which the crack front can be 

observed insitu during its evolution. They deal mainly 

with the universal self-affine character of the crack front. 

The roughness exponent ξ was measured between 0.5 and 

0.6. Here, we have again used the experimental 

framework of [8,3] to measure the time evolution of the 

fluctuations in addition to its roughness.  

All the theoretical studies of the statistical 

properties of the crack front performed in quasi-static, 

use Bueckner [1]-Rice [7] weight function theory, also 

called line elastic models, to evaluate the stress intensity 

factors along the perturbed crack front. Among them, one 

may distinguish two groups depending on the type of the 

advance law used. The first ones [9,10,6] deal with crack 

advance governed by brittle fracture Irwin’s criterion with  
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a slightly heterogeneous toughness. This criterion is a 

threshold type one: the crack propagates only if the stress 

intensity factor becomes equal to the local toughness. In 

particular, by a first order analysis the roughness 

exponent was derived and found to be 𝜉 = 0.37 or 𝜉 =
0.5 de-pendingon the papers. This apparent discrepancy 

will be considered further. The second group deals with 

crack advance governed by Paris’ law (fatigue or sub-

critical fracture). It is a time dependent type criterion: the 

rate of crack advance is proportional to a power law of 

the stress intensity factor. Lazarus, Leblond and coauthors 

have performed the study of a tensile tunnel-crack[4] and 

of a tensile semi-infinite interfacial crack[6]. Contrary to 

the case of threshold advance law, their first order study in 

crack advance was not sufficient to obtain the crack front 

roughness. However Adda-Bedia and Katzav[5] 

performed the second order study for a semi-infinite 

crack and obtained 𝜉 = 0.5.  

Here, the work of Pindra, Lazarus and Leblond 

[6] is applied to experiments made with the same frame 

work as Delaplace, Maloy and Schmittbuhl [8,3]. For 

Irwin’s advance law, using Bueckner-Rice formulation for 

a semi-infinite crack subjected to line loading on its 

faces, the evolution of the variance and power spectrum, 

so as the roughness exponent are derived and compared 

to previous theoretical results of Schmittbuhl, Vilotte and 

coauthors [9,10]. Then, comparison with experiments are 

performed, not solely on the roughness exponent as in 

previous papers but also on the evolution of the crack 

front amplitude. 
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2 Experiments 

y 

z 

x 

Figure 1. Two PMMA plates intered together: a thick clamped one (21cmlong, 11cmwide, and 1cmthick)and a thin one(23 

cm×9cm×0.6cm) subjected to a normal displacement. 

The experimental framework is the one still used 

by Delaplace, Maloy and Schmittbuhl [8,3]. Two PMMA 

transparent plates are sand blasted and annealed together 

by increasing temperature to obtain one block with a 

weak plane where the crack will propagate. The larger 

plate is clamped. A normal displacement is applied to the 

smaller one that creates a stable propagating crack in the 

weak plane of the specimens (fig.1). The crack front is 

observed with a microscope at several stages of the 

propagation. 

Figure 2. Experimental picture of the crack front for one equilibrium position. In blue the extracted crack front 

By image treatment, one extracts the position of 

the crack fronts at different time steps (fig.2). The front 

becomes rough because of the toughness fluctuations 

introduces by the sand blasting. 

3 Theoretical determination of the roughness 

3.1 Evolution of the perturbation of the crack fronts 

Since [6] is a general paper (an interfacial crack, 

several type of loadings, fatigue and fragile fracture are 

considered), and hence is quiet complicated, we give here 

the reasoning in the particular case of an homogeneous 

medium (𝜀 = 0),the particular line loading of the 

experiments, brittle fracture, although most of the results 

can be directly(but not painlessly) derived from the paper. 

Let us consider a semi-infinite plane crack in an infinite 

homogeneous linear elastic medium. Line 

tractions ±𝑃𝑒𝑦 are applied on the crack faces at a

distance 𝑎 of the crack front (fig.3). We suppose that for 

each equilibrium position of the crack front, Irwin’s 

criterion is satisfied, that is: 

𝐾(𝑀) = 𝐾𝑐(𝑀)                                      (1) (1)

at each point 𝑀 of the crack front. Here 𝐾 𝑀 is the stress 

intensity factor (SIF) and 𝐾𝑐(𝑀) the toughness, both at

point M. 

x 
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 Figure 3. Semi-infinite plane crack with as lightly perturbed crack front and line tractions at a distance 𝑎 of the crack front 

If the toughness is uniform, the crack front 

remains straight during propagation. The SIF along the 

crack front are then: 

  (2) 

So that the loading corresponding to position 𝑎 of the 

front verifies: 

  (3) 

Notice that the propagation is stable, in the sense 

that the loading has to be increased for the crack to 

advance (𝑎 increases). 

Now introduce some small fluctuations of the 

toughness: 

𝐾𝑐 𝑧, 𝑥 = 𝐾𝑐 1 + 𝜅 𝑧, 𝑥  ,   |𝜅| ≪ 1                     (4)

It produces small fluctuations 𝛿𝑎(𝑧, 𝑎)and 𝛿𝐾(𝑧, 𝑎)of the 

crack front position a (z,a) and of the SIF K (z,a) (see fig 

3) so that:

𝑎(𝑧, 𝑎) ≡ 𝑎 + 𝛿𝑎(𝑧, 𝑎), |𝛿𝑎(𝑧, 𝑎)| ≪   𝑎 

𝐾(𝑧, 𝑎) ≡ 𝐾(𝑎) + 𝛿𝐾(𝑧), |𝛿𝐾(𝑧, 𝑎)| ≪   𝐾(𝑎) 

  (5) 

where 𝑎 and 𝐾(𝑎)denote their mean values. 

Expanding Irwin’s criterion (1) to first order and 

identifying terms of order 0 and1, one gets: 

(6) 

Now we use Bueckner [1]-Rice [7] formalism, expanded 

to line tractions as in [6], to express the perturbed SIF to 

first order in 𝛿𝑎: 

(7) 

Inserting equation (7) into (6.2) and taking the Fourier 

transform of the equation, one gets: 

𝛿𝑎  𝑘, 𝑎 = −
2𝑎𝜅 (𝑘,𝑎)

1+ 𝑘𝑎 
   (8) 

3.2 Statistical study of the deformation of the front 

We consider a large number of random possible 

realizations of the heterogeneous medium and the crack 

geometry. Statistical invariance of the functions 𝜅(𝑧, 𝑥)in 

the direction 𝑧 and 𝑥, and 𝛿𝑎(𝑧, 𝑎)in the direction 𝑧 being 

assumed, the two point auto-correlation functions of these 

functions depend only on the relative position of the 

points considered: 

    𝐸[𝜅(𝑧1, 𝑎)𝜅(𝑧2, 𝑎)] = 𝐾(𝑧2 − 𝑧1)  (9) 

 𝐸[𝛿𝑎(𝑧1, 𝑎)𝛿𝑎(𝑧2, 𝑎)] = 𝐴(𝑧2 − 𝑧1, 𝑎)  (10) 

where 𝐸 [𝑋] denotes the mathematical expectation of any 

quantity 𝑋.The functions 𝐾 𝑧 and 𝐴(𝑧, 𝑎)can be 

identified with the average values of 𝜅(𝑧′, 𝑎)𝜅(𝑧′ + 𝑧, 𝑎) 

and 𝛿𝑎(𝑧′, 𝑎)𝛿(𝑧′ + 𝑧, 𝑎) over the crack front, provided
an ergodic hypothesis is made. The function 𝐴(𝑧, 𝑎) and 

its 𝑧-Fourier transform (𝑘, 𝑎) (the spectral density of the 

perturbation) provide statistical information about the 

geometry of the crack front. 

Using the property that 

𝐴( 𝑘, 𝑎) =  𝐸[𝛿𝑎  𝑘1 , 𝑎 𝛿𝑎  −𝑘, 𝑎 ]𝑑𝑘1
+∞

−∞

 (11) 

and equation (8), one obtains the power spectrum of 

perturbation of the crack front: 

𝑃 = 𝐾𝑐 
𝜋𝑎
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𝐴( 𝑘, 𝑎) =
4𝑎2

(1+ 𝑘𝑎 )2 𝐾( 𝑘)  (12) 

For  𝑎 ≫ 𝑎0   this yields :

 

𝐴( 𝑘, 𝑎) =
4

𝑘2 𝐾( 𝑘)

𝐴( 0, 𝑎) = 4𝐾( 0)𝑎2

  (13) 

Taking the inverse Fourier transform of 

equation (12), one gets for  𝑎 ≫ 𝑎0

𝐴(𝑧, 𝑎)~
4

𝜋
𝐾( 0)𝑎                                                        (14)

The square fluctuation  

 can also be derived.  

For 𝑎 ≫ 𝑎0 and    𝑧 ≫ 𝑏 , 𝑏  being the correlation length 
of 𝑘 (𝑏 = 0 for white noise) : 

𝜎 𝑎, 𝑧 2~4𝐾 (0)𝑧

 (15) 

3.3 Roughness exponent 

Suppose that the toughness fluctuation are given 

by a white noise:𝐾( 𝑘)  =  𝐾0
 = 𝐶𝑠𝑡.

Equations (13) or (15) gives the value of the so-called 

wandering or roughness exponent: 
𝜉 = 0.5                                                                        (16) 

However, numerical simulations performed in 

[10] using also Bueckner-Rice formula (7) yield two 

different values: 𝜉 = 0.37 as in [9] and𝜉 = 0.5, the first 

value being obtained if in their simulations 𝛿𝑎𝑚𝑎𝑥 >
𝑏and the second if  𝛿𝑎𝑚𝑎𝑥 < 𝑏 . The difference hence is

due to the numerical parameters used. May be that for 

𝛿𝑎𝑚𝑎𝑥 > 𝑏, the results are in fact illicit since Bueckner-
Rice formula, that supposes the perturbation and all is 

derives small, is then no more valid for 
𝜕𝛿𝑎

𝜕𝑧
~

𝛿𝑎𝑚𝑎𝑥

𝑏
> 1. 

Moreover, physically it may be more pertinent to 

suppose that 𝛿𝑎𝑚𝑎𝑥 < 𝑏 when the crack front is trapped, 
as in the experiments by fluctuations of thoughness 

(roughness smaller than the typical size of the zones of 

higher thoughness). Whatever, further investigations are 

under to clarify this point. 

4 Comparison experiments and Theoretical 

results 

4.1 Power spectrum evolution 

Figure 4. Power spectrum. Marker lines: for several crack 

fronts with 𝑎 between 35mm and 100mm. Continuous line:  
𝐴 (𝑘) ∝ 𝑘−1−2𝜉 , 𝜉 = 0.5

Spectrum 𝑘 → 𝐴 (𝑘) evolution is given for several crack 

positions 𝑎. Several remarks can be done: 

a) For all the fronts considered, 𝐴 (𝑘) is 
independent of 𝑎.This is in agreement with

In figure 4, the experimental power the behavior for 

large 𝑎 obtained in eq.(13). 

b) The roughness exponent as in previous

measures is near 𝜉 = 0.5 in agreement

with our theoretical prediction.

 σ(z, a) ≡ E [(δa(z, a) − δa(0, a))2]
1/2 
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4.2 Variance evolution 

Figure 5. Variance. Marker lines: for several crack front with 𝑎 between 36mm and 58mm. Continuous line: the mean of all 

these values 

      In figure 5, the experimental evolution of the 

variance is given. One notices that: 

1. The values for several front oscillates around the

mean value during propagation. This corresponds to

fluctuations of each position of the front around a

steady state situation, due to the heterogeneities.

2. The steady state situation observed is also in

agreement with the longtime behavior of the variance

found in equation (15).

3. The mean value varies linearly with 𝑧 as predicted by

equation (15). Hence one retrieves a roughness

exponent of 𝜉 = 0.5.

Conclusion 

We considered a semi infinite crack embedded in 

an infinite elastic medium subjected to traction line 

loading on its faces. Using Bueckner-Rice weight 

function theory for this geometry (elastic line model), the 

power spectrum and the variance of the crack fluctuations 

arising from small toughness fluctuations has been de-

rived analytically. In particular, a roughness exponent of 

𝜉 =  0.5 has been found in contradiction with some 

previous numerical works but in agreement with the 

results found by [10] in the case of small roughness 

amplitude toward the correlation length of the thoughness 

fluctuations. 

Inspite of the approximations made in the 

theoretical modelization (finite geometry replaced by 

infinite one, uniform displacement loading along the line 

replaced by uniform force loading), one recovers at least 

qualitatively the experimental behavior in particular for 

the steady state situation and for the value of the 

roughness exponent. 
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