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Abstract 

In the modern era, Road accident prediction models are priceless tools that have valuable applications in road 

accidents protective analysis. This paper focuses on the Generalized Linear Regression (GLR) modeling on the number of 

people died, injured with primarily involved vehicles by road accidents for the years 2001-2015 in Tiruchirappalli District 

and the exhaustive analysis of the data using two statistical techniques such as Poisson regression and Negative Binomial 

regression to fit a model to the data. To propose improvement measures to prevent road accidents and to derive a model for 

accident parameters. This paper suggests procedures for developing prudent models, i.e. models that are not overfitted, and 

best-fit models. The respective models were used to identify the vehicles that caused more people died and injured.  
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Introduction  

Transportation is a non-separable part of any 

society. More than six thousand years, the constructions 

of roadways have been doing by human beings. Early 

roadways carried pedestrians, hoofed animals and simple 

wheeled vehicles such as wagons. As traffic volumes 

grew, it became apparent that traffic regulation would be 

necessary for safety and efficiency. In the first century 

BC, wheeled traffic was banned by Julius Caesar within 

the ancient Rome during the certain hours of the day 

(Swaha Bhattacharya, 2008). After that, Ms. Mary Ward 

was the first documented victim of vehicular accident 

that took place on August 31, 1869, (Akarro RJ, 2009) 

the worldwide road accidents fatalities have been raised 

to nearby 1.2 million/year. Almost three quarter of deaths 

resulting from motor vehicle crashes occur in developing 

country (Odero W et., 1997). In India, the motor vehicle 

population has increased significantly over the last four 

decades in a faster rate than the economic and population 

growth. The surge in motorization coupled with 

expansion of the road network has brought with it the 

challenge of addressing adverse factors such as the 

increase in road accidents. It is consequently the need of 

the hour to take suitable preventive measures, so that loss 

of precious lives can be brought down to a minimum.  

There are plentiful techniques available for estimating  
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the number of accidents. The Multiple regression 

technique was helped to find out the prior relationship 

between the number of accidents, human population and 

vehicle population (Philip Arokiadoss et al, 2016). Hadi 

et al, (1995) and Anis (1996) have been made to describe 

the discrete count road accident data and to produce 

more accurate and reliable models through the use of 

Generalized Linear Models (GLM) with Poisson and 

negative binomial distributions.  

The Poisson regression model is also a 

technique of Generalized Liner model which is used to 

describe count data as a function of a set of predictor 

variables. To investigate the incidence and mortality of 

chronic diseases, it has been extensively used both in 

human and in veterinary epidemiological studies in the 

last two decades. Also, Poisson regression has been 

applied in the analysis of accident data for modelling 

Road accidents in different parts of the world. Among its 

numerous applications, Poisson regression has been 

mainly applied to compare exposed and unexposed 

cohorts and to evaluate the causes of road traffic 

accidents. In recent scenario, Poisson type regression 

models have been used to model count response variable 

affected by one or more covariates. The generalized 

event count models based on the Poisson, negative 

binomial distributions developed by King (1989). 

Winkelmann and Zimmermann (1994) noted that the 

Poisson regression model is not appropriate when a data 

set exhibit over-dispersion, a condition where the 

variance is more than the mean. In order to address the 

issue of over-dispersion Abdel-Aty and Radwan (2000) 
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and Guevara et al., (2004) used negative binomial 

distribution which allows variance to exceed the mean. 

The objective of the paper is to evaluate primarily 

involved vehicles and its relation between accident per 

year and inclusive Parameters such as number of person 

died and injured and to develop Generalized Linear 

Regression models with test their validity.  

 

Methodology 

The corresponding Road accident data is to be 

collected from District Crime Records Bureau (DCRB), 

District Police Office, Tiruchirappalli district. It includes 

no. of vehicles involved, number of person died, injured, 

and etc., the data was taken from 2001 to 2015. Also, the 

accidents data are represented as figures and 

characterized the road accidents by types of vehicles are 

given in years ancient. The analysis of the data would be 

done by using MS-Excel and RStudio software. The 

proposed methodology has shown in the Figure (1), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I  

Organization chart 

 

The Generalized Linear Model (GLM) is an 

extension of the Linear Model to include response 

variables that follow any probability distribution in the 

exponential family of distributions. Many commonly 

used distributions in the exponential family are the 

normal, binomial, Poisson, exponential, gamma and 

inverse Gaussian distributions. GLM was first introduced 

by Nelder and Wedderburn (1972). It provided a unified 

framework to study various regression models, rather 

than a separate study for each individual regression. 

GLM consists of three components: 

 

a. Random Component – refers to the probability 

distribution of the response variable (Y) given the 

explanatory variable Xij. 

b. Systematic Component - specifies the explanatory 

variables (X1, X2, ... Xm) in the model, more 

specifically their linear combination in creating the 

so called linear predictor. 

         i.e., Y= β0 + β1X1i + β2X2i+…+ βmXmi          --- (2.1) 

c. Link Function, ηi or g(μi) - specifies the link between 

random and systematic components. It says how the 

expected value of the response relates to the linear 

predictor of explanatory variables; 

      ηi = g(E(Yi)) = E(Yi)          --- (2.2) 
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GLM is an extension of the classical linear 

models. It includes linear regression models, analysis of 

variance models, Logistic regression models, Poisson 

regression models, Zero-inflated Poisson regression 

models, Negative Binomial regression models, log-linear 

models, as well as many other models. The above 

models share a number of unique properties, such as 

linearity and a common method for parameter 

estimation. In spite of its recent wide application, 

Poisson regression model remains partly poorly known, 

especially if compared with other regression techniques, 

like linear, logistic and Cox regression models.  The 

Poisson regression model assumes that the sample of 𝑛 

observations, are observations on independent Poisson 

variables 𝑌𝑖 with mean E(Yi)=λi. If this model is correct, 

the equal variance assumption of classic linear regression 

is violated, since the 𝑌𝑖 have means equal to their 

variances. So, we fit the generalized linear model,  

Log(λi) = α+ β1X1i + β2X2i+…+ βmXmi+εij           -- (2.3) 

 

The major assumption of Poisson model is, 

           𝐸 (𝑦𝑖 𝑥𝑖) =𝑉𝑎𝑟 (𝑦𝑖 𝑥𝑖)                --- (2.4) 

 

If 𝑉𝑎𝑟 (𝑦𝑖 𝑥𝑖) > 𝐸 (𝑦𝑖 𝑥𝑖) then there is over-

dispersion. If, 𝑉𝑎𝑟 (𝑦𝑖 𝑥𝑖) < 𝐸 (𝑦𝑖 𝑥𝑖) then under-

dispersion has occurred. The Poisson model does not 

allow for over or under dispersion.  A comfortable model 

is obtained by using the Negative binomial distribution 

instead of the Poisson distribution. To estimate the 

parameters using the Maximum Likelihood Estimation 

(MLE). Negative binomial regression is a prevalent 

generalization of Poisson regression because it slackens 

the highly restrictive assumption that the variance is 

equal to the mean made by the Poisson model. A 

measure of discrepancy between observed and fitted 

values is the deviance. Deviance is defined as the log 

likelihood of the final model, multiplied by (-2). The 

formula to estimate the deviance has given below. 
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The Pearson Chi-square is used to measure the 

log-likelihood value to measure the goodness of fit that 

compares the predicted values of the dependent variable 

with all other observed values.  
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where iŷ be the predicted value of iy                --- (2.6) 

The consequence of this test for comparing 

models mentioned is usually equivalent to evaluating the 

dispersion parameter. Akaike Information Criteria (AIC) 

or Bayesian Information Criteria (BIC) is applied. AIC 

and BIC are calculated as:  

AIC = -2LL+2k; BIC =-2LL+k log n             --- (2.7) 

Where LL be a log-likelihood 

k – number of parameter 

n – number of observations 

According to Liu, W. and Cela, J. (2008) 

renowned that the least AIC is the perfect model fit. 

Consequence of model evaluation AIC and BIC are 

similar and their values are close together. Meanwhile, 

the Pearson Chi-square test, deviance, likelihood ratio 

test, AIC and BIC are very acquainted to those who used 

the General Linear Models (Noriszura Ismail et al, 2007) 

with Poisson error structure for claim frequency analysis.  

Since these measures might be implemented to the 

Poisson and Negative Binomial Regression Models as 

well. 

 

Analysis and Interpretation 

 

Table 1 

Types of vehicles primarily responsible of Road accidents (2001-2015) 

 

Parameter 
Type of Vehicle Primarily Responsible 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

FA 

Nos. 1444 189 727 6 270 760 955 424 0 94 458 

Mean 96.3 12.6 48.5 0.4 18.0 50.7 63.7 28.3 0.0 6.3 30.5 

% 27.1 3.5 13.6 0.1 5.1 14.3 17.9 8.0 0.0 1.8 8.6 

NFA 

Nos. 4211 257 330 38 669 3161 3039 228 0 383 1534 

Mean 280.7 17.1 22.0 2.5 44.6 210.7 202.6 15.2 0.0 25.5 102.3 

% 30.4 1.9 2.4 0.3 4.8 22.8 21.9 1.6 0.0 2.8 11.1 

PD 

Nos. 1738 194 845 14 322 916 1134 361 0 100 522 

Mean 115.9 12.9 56.3 0.9 21.5 61.1 75.6 24.1 0.0 6.7 34.8 

% 28.3 3.2 13.7 0.2 5.2 14.9 18.5 5.9 0.0 1.6 8.5 

PI 

Nos. 7125 750 3818 34 1178 6370 4389 1988 0 492 3371 

Mean 475.0 50.0 254.5 2.3 78.5 424.7 292.6 132.5 0.0 32.8 224.7 

% 24.1 2.5 12.9 0.1 4.0 21.6 14.9 6.7 0.0 1.7 11.4 

  

*X1 = Two-wheelers; X2 = Three-wheelers; X3 = Car; X4 = Jeep; X5 = Taxi; X6 = Bus; X7 = Truck; X8 = Tempo; X9 = 

Articulated Vehicles; X10 = Tractor; X11 = Others / Unknown Vehicles 
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People died by various vehicles 

The experimental results reveal that Road 

accident data from 2001 to 2015 which involved two-

wheelers constitute 28.3% of people died and it was 

tabulated in the Table 1. This was followed closely by 

Truck which died 1,134 representing 18.5% of those who 

were died by road accidents.  

 

 
 

Figure II 

Percentage of people died by various types of vehicles 

 

Buses (14.9%) were the third on the list of type 

of vehicles which die most people in accidents with 916 

people who were died which graphically illustrated in the 

Figure (2). Hostilely, the type of vehicle which no one 

died nor injured by Articulated Vehicles such as 

bulldozer, tipper, mixer and loading box. In order to 

introduce the Poisson distribution and consider the 

person died by the road accident data for modeling the 

linear function over the same period. The result is a 

Generalized Linear Regression Model (GLRM) with 

Poisson response and log link function.  

 

Akaike’s Weight 

 

Model Specification  AIC ∆i AIC RL Wi (AIC) 

(a) log(λa)pd= αa+βi v_type; i=1, 2, 3, …..., 11.  1182.74 207.90 0.00 0.00 

(b) log(λb)pd= αb+βi year; i=1, 2, 3, …..., 15. 6330.35 5355.51 0.00 0.00 

(c) log(λc)pd= αc+βi v_type+ βj year; i=1, 2, 3, …..., 11; j=1, 2, 3, …..., 15. 974.84 0.00 1.00 1.00 

* pd=person died; v_type=vehicle types; RL=Relative Likelihood; 

 

The above Akaike’s Weight specifies that the 

perfect model (approx. 99%) which fit the types of 

vehicles that people died in Tiruchirappalli district from 

2001-2015, is Model (c). Seemingly, it doesn’t any 

entrant, owing to Model (c) has the smallest AIC, 

correspondingly it has the greatest cost of Akaike weight 

(Wi).  

 

Goodness of fit 

Data Criteria Value df Value/df 

Deviance 200.155 140 1.430 

Pearson Chi-Square 221.404 140 1.581 

AIC 979.842 
  

BIC 1057.491     
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The goodness-of-fit can be based on the 

deviance statistic that is defined by Famoye (1993). The 

deviance statistic can be approximated by a chi-square 

distribution when µi’s are large. We use the log-

likelihood value to measure the goodness-of-fit of the 

regression models. A measure of discrepancy between 

observed and fitted values is the deviance. We evaluate 

the deviance (200.155) as Chi-square distributed with the 

model degrees of freedom (140). Hence, we conclude 

that the model fit reasonably well because the 

compilation of likelihood ratio chi-squared test is no 

statistically significant with degrees of freedom (140) 

against the intercept. 

 

Table 2 

Estimation results for Poisson Regression and Negative Binomial Regression Models- People died by Road accidents 

 

Parameter 
Model 1: Poisson Regression Model 2: Negative Binomial Regression 

Estimate t-statistic Pr(>|t|) Estimate t-statistic Pr(>|t|) 

(Intercept) 4.23735 50.963 < 2e-16 *** 4.23700 64.058 < 2e-16 *** 

V_typeX2 -2.15571 -22.603 < 2e-16 *** -2.15600 -28.418 < 2e-16 *** 

V_typeX3 -0.68423 -12.895 < 2e-16 *** -0.68420 -16.203 < 2e-16 *** 

V_typeX4 -4.78451 -14.176 < 2e-16 *** -4.78400 -17.827 < 2e-16 *** 

V_typeX5 -1.64902 -21.550 < 2e-16 *** -1.64900 -27.090 < 2e-16 *** 

V_typeX6 -0.60355 -11.679 < 2e-16 *** -0.60350 -14.675 < 2e-16 *** 

V_typeX7 -0.39006 -8.066 2.94e-13 *** -0.39010 -10.134 < 2e-16 *** 

V_typeX8 1.37383 -20.095 < 2e-16 *** -1.37400 -25.259 < 2e-16 *** 

V_typeX9 -21.99906 -0.020  0.984296 -41.74000 0.000    1.00000 

V_typeX10 -2.81840 -21.771 < 2e-16 *** -2.81800 -27.375 < 2e-16 *** 

V_typeX11 -1.16590 -18.495 < 2e-16 *** -1.16600 -23.246 < 2e-16 *** 

YearY2   0.06847 0.624  0.533665 0.06854 0.785     0.43233 

YearY3 0.24032 2.279  0.024198 *     0.24040 2.865     0.00417 **   

YearY4 0.32913 3.181  0.001808 **   0.32920 3.999 6.37e-05 *** 

YearY5 0.42109 4.147 5.82e-05 *** 0.42110 5.212 1.87e-07 *** 

YearY6 0.40284 3.952 0.000122 *** 0.40280 4.968 6.76e-07 *** 

YearY7 0.48853 4.874 2.92e-06 *** 0.48850 6.126 9.01e-10 *** 

YearY8 0.49815 4.979 1.85e-06 *** 0.49810 6.258 3.89e-10 *** 

YearY9 0.62176 6.356 2.73e-09 *** 0.62180 7.989 1.36e-15 *** 

YearY10 0.59172 6.017 1.48e-08 *** 0.59180 7.563 3.94e-14 *** 

YearY11 0.61327 6.260 4.42e-09 *** 0.61330 7.868 3.61e-15 *** 

YearY12 0.61327 6.260 4.42e-09 *** 0.61330 7.868 3.61e-15 *** 

YearY13 0.64887 6.664 5.65e-10 *** 0.64890 8.376 < 2e-16 *** 

YearY14 0.67527 6.967 1.16e-10 *** 0.67520 8.755 < 2e-16 *** 

YearY15 0.65707 6.758 3.47e-10 *** 0.65700 8.493 < 2e-16 *** 

          Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

                     The above Table 2 reveals that the model-1 

estimated by the Poisson regression. The AIC of this 

model was 979.84; the null deviance was 5801.30 on 164 

degrees of freedom and residual deviance of 200.15 on 

140 degrees of freedom following the chi-square 

distribution (χ
2
) with one degree of freedom. However, 

an assumption of Poisson distribution which is the 

equality of the mean and variance which means that the 

dispersion parameter should always be closer to 1 has 

been violated. The dispersion parameter (1.58146) of the 

above model is far greater than 1, an indication of over 

dispersion in the data. The parameters of the model have 

been over estimated and will not give a true reflection of 

number of people likely to be died through road 

accidents in a given types of vehicles for a particular 

year. To eliminate this error by model-2, Negative 

Binomial regression which was used to validate the 

model that the parameter estimates reduced and the 

standard errors also decreased. The parametric analysis 

for the comparison between the Poisson and Negative 

Binomial regressions for evaluating the best fitted model 

using Table (3) as given below. 
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Table 3  

Results of Model Evaluations and Comparisons 

 

Measures 
Poisson Regression 

Model 

Negative Binomial 

Regression Model 

Null deviance 5801.30 5797.24 

Degrees of freedom 164.00 164.00 

Residual deviance 200.15 200.05 

Degrees of freedom 140.00 140.00 

AIC 979.84 981.86 

Dispersion parameter 1.58 1.00 

No. of Fisher Scoring 15.00 1.00 

 

We observed from the above Table 3, the 

Poisson Regression model is actually the best model 

which fit the model for Number of People who were died 

by Different Types of Vehicles data from 2001-2015. 

Because AIC of the Poisson model (979.84) is less than 

the Negative Binomial model (981.86). As the dispersion 

parameter, has reduced from 1.58 which was giving by 

the Poisson regression model to 1.00. Table 2 reveals that 

the first group (βi) in a data as the base level by default 

and such as V_typeX1 (Two wheelers) and the year 2001 

were selected as the base levels for comparison in the 

analysis of the parameter estimates in the Poisson 

regression model. The intercept was found to be 4.2374 

which was very significant at 95% significant level with 

p-value of < 2e-16. Excluding Articulated Vehicles (V-

typeX9) which was not significantly different from the 

two-wheelers in the model, the rest of the vehicles were 

all significantly smaller than the base level in the model 

at 5% 𝛼-level for every year. For instance, V-typeX2 

(three wheelers) was found to have parameter estimate of 

-2.156 less than the logarithm of the expected number of 

people who were died by two-wheelers for every year. 

Also, the expected number of people who were died by 

others/unknown vehicles (V_typeX11) was 𝑒−1.166 
= 

0.311642 times less than that of two-wheelers for every 

year. The Table 2, further exposes that the second group 

(βj) such that the expected number of people who were 

died by different types of vehicles for the years 2002, 

2003 and 2004 were not significantly different from 

2001 for all types of vehicles in the model giving that the 

year 2001 is the base level. 2010 was found to be the 

year which had most people died by road accident for all 

types of vehicles in Tiruchirappalli. It was found that 

2015 had 𝑒0.6571
=1.929132 times more than the expected 

number of people died in 2001 for all types of vehicles in 

Tiruchirappalli District. The Fitted model is existing in 

equation 3(a) below.  

 

log(λc)pd = 4.2374 – 2.156(X2) -0.684(X3) -4.785(X4) -

1.649(X5) -0.604(X6) -0.390(X7) +1.3738 (X8) 

-22.9991(X9) -2.818(X10) -1.166(X11) 

+0.0685(Y2) +0.2403(Y3) +0.3291(Y4) 

+0.4211(Y5) +0.4028(Y6) +0.4885(Y7) 

+0.4982(Y8) +0.6218(Y9) +0.5917(Y10) 

+0.6133(Y11) +0.6133(Y12) +0.6489(Y13) 

+0.6753(Y14) +0.6571(Y15) 

--------- 3(a) 

where X1, X2…, X11 represent the primarily involved 

vehicle types who there is the number of people died by 

road accidents and Y1, Y2…, Y15 denotes the year 2001, 

2003, …, 2015 respectively. 

 

People injured by various vehicles 

The Table 1 depicts that two-wheelers were 

responsed maximum (24.1%) number of people injured. 

This was followed nearly by Buses which injured 6,370 

representing 21.6% of those who were injured by road 

accidents. Trucks (14.9%) were the third on the list of 

type of vehicles which kill most people in accidents with 

4,389 people who were injured for the period 2001 to 

2015. The type of vehicle which died and injured the 

least number of people for the years under consideration 

is Jeep. The percentage of people injured by various 

types of vehicles in Tiruchirappalli district is as shown in 

the Figure III below.  
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Figure III  

Percentage of people injured by various types of vehicles 

 

The Figure III represents the percentage of 

people injured through road accidents in Tiruchirappalli 

district from 2001 to 2015. In order to the Poisson 

distribution and consider the number of person injured 

by the road accident data for modeling the linear 

function over the period 2001-2015. The following result 

is a GLR model with Poisson response and log link 

function. 

 

Akaike’s Weight 

 

Model Specification  AIC ∆i AIC RL Wi (AIC) 

(d) log(λd)pi= αd+βi v_type; i=1, 2, 3, …..., 11.  3178.10 2506.06 0.00 0.00 

(e) log(λe)pi= αe+βi year; i=1, 2, 3, …..., 15. 28815.00 28142.96 0.00 0.00 

(f) log(λf)pi= αf+βi v_type+ βj year; i=1, 2, 3, …., 11; j=1, 2, 3,.…, 15. 2389.50 1717.46 1.00 1.00 

* pi=person injured; v_type=vehicle types; RL=Relative Likelihood; 

 

The Akaike’s Weight prefers that the Model (f) 

has perfectly fit (approx. 99.9%) for the types of vehicles 

that people injured in Tiruchirappalli district from 2001-

2015. Apparently, it doesn’t any competitor value, since 

it has the smallest AIC, likewise it has the extreme cost 

of Akaike weight (Wi).  

 

Goodness of fit 

Data Criteria Value df Value/df 

Deviance 1381.814 140 9.870 

Pearson Chi-Square 1341.345 140 9.581 

AIC 2389.503 
  

BIC 2467.182     

 

The goodness-of-fit can be based on the 

deviance statistic. It can be move toward by a chi-square 

distribution when µi’s are large. We use the log-

likelihood value to measure the goodness-of-fit of the 

regression models. A measure of discrepancy between 

observed and fitted values is the deviance. We evaluate 

the deviance (1381.814) as Chi-square distributed with 

the model degrees of freedom (140). Hence, we conclude 

that the model fit reasonably well because the 

compilation of likelihood ratio chi-squared test is no 

statistically significant with degrees of freedom (140) 

against the intercept. 
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Table 4  

Estimation results for Poisson Regression and Negative Binomial Regression Models- People died by Road accidents 

 

Parameter 
Model 1: Poisson Regression Model 2: Negative Binomial Regression 

Estimate t-statistic p-value Estimate t-statistic p-value 

(Intercept) 5.809 65.093 < 2e-16 *** 5.831 52.372 < 2e-16 *** 

V_typeX2 -2.673 -18.525  < 2e-16 *** -2.618 -25.116  < 2e-16 *** 

V_typeX3 -0.748 -11.566 < 2e-16 *** -0.702 -7.328 2.34e-13 *** 

V_typeX4 -2.251 -18.946 < 2e-16 *** -2.234 -22.076 < 2e-16 *** 

V_typeX5 -0.624 -10.049 < 2e-16 *** -0.641 -6.692 2.21e-11 *** 

V_typeX6 -5.234 -10.396 < 2e-16 *** -5.208 -27.851 < 2e-16 *** 

V_typeX7 -1.803 -18.495 < 2e-16 *** -1.805 -18.257 < 2e-16 *** 

V_typeX8 -0.112 -2.099     0.03765 *   -0.085 -0.890     0.37355 

V_typeX9 -0.485 -8.157 1.76e-13 *** -0.487 -5.097 3.46e-07 *** 

V_typeX10 -1.276 -16.258 < 2e-16 *** -1.288 -13.276 < 2e-16 *** 

V_typeX11 -21.454 -0.021     0.98314 -38.440 0.000     0.99998 

YearY2   0.010 0.086     0.93169 0.048 0.371     0.71097 

YearY3 0.168 1.487     0.13918 0.223 1.731     0.08341 

YearY4 0.310 2.828     0.00537 **  0.314 2.437     0.01480 *   

YearY5 0.228 2.045     0.04273 *   0.226 1.750     0.08015 

YearY6 0.224 2.002     0.04727 *   0.193 1.494     0.13527 

YearY7 0.354 3.256     0.00142 **  0.310 2.408     0.01606 *   

YearY8 0.352 3.236     0.00151 **  0.320 2.485     0.01294 *   

YearY9 0.442 4.134 6.11e-05 *** 0.419 3.265     0.00109 **  

YearY10 0.489 4.624 8.49e-06 *** 0.435 3.389  0.000703 *** 

YearY11 0.484 4.564 1.09e-05 *** 0.429 3.341 0.000834 *** 

YearY12 0.470 4.425 1.93e-05 *** 0.393 3.062   0.002196 **  

YearY13 0.509 4.829 3.56e-06 *** 0.416 3.243   0.001184 **  

YearY14 0.534 5.084 1.16e-06 *** 0.462 3.605 0.000312 *** 

YearY15 0.531 5.053 1.33e-06 *** 0.452 3.522 0.000429 *** 

          Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The Table 4 shows that the model-1 valued by 

the Poisson Regression model. Still, one assumption of 

Poisson distribution which is the equality of the mean 

and variance which means that the dispersion parameter 

should always be closer to 1 has been violated. The 

dispersion parameter (9.581038) of the above model is 

far greater than 1, an indication of over dispersion in the 

data. To eliminate such an error by model-2, Negative 

Binomial regression which was used to validate the 

model that the parameter estimates reduced and the 

standard errors also decreased. The parametric analysis 

for the comparison between the Poisson and Negative 

Binomial regression for goodness of fit test of the model 

is shown in Table below. 

 

Table 5  

Results of Model Evaluations and Comparisons 

 

Measures 
Poisson Regression 

Model 

Negative Binomial 

Regression Model 

Null deviance 28643.80 3629.00 

Degrees of freedom 164.00 164.00 

Residual deviance 1381.80 176.84 

Degrees of freedom 140.00 140.00 

AIC 2389.50 1517.30 

Dispersion parameter 9.58 1.00 

No. of Fisher Scoring 13.00 1.00 
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Table 5 found that, the Negative Binomial 

Regression model is actually the best model which fit the 

model for Number of People who were injured by 

various types of vehicles for Road accident data from 

2001-2015. Because AIC of the Negative Binomial 

model (1517.30) is less than the Poisson model 

(2389.50). As the dispersion parameter, has reduced 

from 9.58 which was giving by the Poisson regression 

model to 1.00. From the Table 4, R Studio takes the 

model-2 in a data as the base level by default as two-

wheelers (V_typeX1) and the year 2001 were selected as 

the base levels for comparison in the analysis of the 

parameter estimates in the negative binomial regression 

model. The intercept was found to be 5.809 which was 

very significant at 95% significant level with p-value of 

< 2e-16 following a Pearson Chi-square distribution 

1341.345 with 140 degrees of freedom others/unknown 

vehicles (V-typeX11) which was not significantly 

different from the two-wheelers in the model, the rest of 

the vehicles were all significantly smaller than the base 

level in the model at 5% 𝛼-level for every year. For 

instance, Tempo (V-typeX8) was found to have 

parameter estimate of -0.085 less than the logarithm of 

the expected number of people who were injured by two-

wheelers for every year. The evident also point to Table 4 

that the expected number of people who were injured by 

Buses (V_typeX6) was 𝑒 
−5.208

 =0.0055 times less than 

that of two wheelers for every year. Further the Table (4) 

reveals that the expected number of people who were 

injured by different types of vehicles for the years 2002, 

2003, 2005 and 2006 were not significantly different 

from 2001 for all types of vehicles in the Negative 

Binomial Regression model. In the year of 2014 was 

found to be the maximum number of people injured by 

road accident for all types of vehicles in Tiruchirappalli 

District. It was found that 2010 had 𝑒−0.462 
= 0.6300    

times more than the expected number of people injured 

in 2001 for all types of vehicles in the district. The Fitted 

model is existing in equation as written below.  

 

log(λf)pi = 5.831 – 2.618(X2) -0.702(X3) -2.234(X4) -

0.641(X5) -5.208(X6) -1.805(X7) +0.085 (X8) -

0.487(X9) -1.288(X10) -38.440(X11) 

+0.048(Y2) +0.223(Y3) +0.314(Y4) 

+0.226(Y5) +0.193(Y6) +0.310(Y7) 

+0.320(Y8) +0.419(Y9) +0.435(Y10) 

+0.429(Y11) +0.393(Y12) +0.416(Y13) 

+0.462(Y14) +0.452(Y15)    ------- 3(b) 

 

where X1, X2…, X11 represent the primary involved 

vehicle types who there is the number of people injured 

by road accidents and Y1, Y2…, Y15 denotes the year 

2001, 2002, …, 2015 in that order. 

 

Conclusion 

The outcome of the paper accomplish that the 

Poisson regression model is fitted perfectly for the 

number of people who were died by various types of 

vehicles. It was identified that two-wheelers and Trucks 

were primarily involved and triggered more people to die 

in the road accidents during 2001-2015. Also, the result 

proposed of 2014 was found to be the year which had 

most people died by road accident. Furthermore, 

negative binomial regression model quite better to fit the 

number of people who were injured by various types of 

vehicles. It was observed from the model two-wheelers 

and Buses were chiefly involved and triggered more 

people to injure by the road accidents. It was also found 

that 2014 to be the year which had utmost people injured 

by the road accidents. In spite of the ever-increasing 

number of people using our road and the increasing 

occurrence of road accidents in Tiruchirappalli district, 

the problem can be reduced if every citizen of the district 

can strictly keep to all the preventive measures. In the 

meantime, the type of vehicle involved in the accident 

affects the number of people expected to be died / 

injured; drivers of vehicles such as Two-wheelers, 

Trucks and Buses should be given special training to be 

able to avoid preventable accidents. Road accidents 

injuries are predictable and preventable, but good data 

are important to understand the ways in which road 

safety interventions and technology can be successfully 

transferred from developed countries where they have 

proven effective. Awareness of the consequences of road 

accident injuries are lagging among riders, drivers and 

the public.  
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