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Abstract 

In brittle solids, stress concentration at crack tips makes the macroscopic fracture properties very sensitive to 

heterogeneities at the scale of the micro structure. So, the macroscopic resistance of a solid depends strongly on the resistance 

fluctuations at the microscopic scale. To describe quantitatively this phenomenon in disordered materials, we model first the 

behavior of the crack by a stochastic equation of motion taking into account the role of the microstructure. Our approach is 

first validated by comparing our theoretical predictions with recent experimental observations made on the dynamics and 

morphology of a crack front. We show how to use this approach to determine the effective resistance of a brittle material from 

the characteristics of its micro structure. 
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Introduction  

Breakage of heterogeneous materials is of great 

importance in many areas. This subject is far from 

understood, and has been widely studied in recent 

decades. The competition between the trapping forces 

due to the heterogeneity of the material and the elastic 

forces due to the loading plays a central role for fragile 

materials, and governs largely the crack behavior. 

Several works, both experimental and theoretical, have 

been devoted to the behavior of coplanar interfacial 

fissures in disordered materials. In this type of system, it 

has been established that the crack front has scale 

invariance properties. Because of the heterogeneity of 

the material, the forehead is spread by sudden leaps of all 

sizes. At first, we will recall the foundations of our 

approach to writing the movement of a crack in a 

heterogeneous interface. We will then test the relevance 

of our approach by comparing our theoretical predictions 

with recent experimental observations made in such a 

geometry [1]. We will then use our model to determine 

how the characteristics of the heterogeneous field of 

resistance at the microscopic scale affect the 

macroscopic effective resistance of the interface.  

 

Methodology 

Equation of evolution of the crack front 

The geometry of the studied system, is inspired 

by the experimental device of [Ref] which is 

schematically presented by the diagram Figure I. An  
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interface crack of length f (z, t) is propagates through the 

interface of two elastic plates separated by an opening 

length d. All characteristic lengths are assumed to be 

significantly larger than the forehead fluctuations and the 

characteristic length of heterogeneities. Thus, the 3D 

problem of coplanar crack propagation in a brittle 

material, can be reduced to a 2D problem where the crack 

front is moving in the plane of the interface with 

heterogeneous breaking properties.   

 

 
 

Figure 1                                                              Figure Ia 

Interface Crack 

 

Where𝜇represents the mobility of the front 

and𝐺 𝑧, 𝑡 =

𝐺0 + 𝑘 𝑣𝑚 − 𝑓 𝑧, 𝑡  +
𝐺0

𝜋
 

𝑓 𝑧 ′ −𝑓(𝑧)

(𝑧 ′−𝑧)2

+∞

−∞
𝑑𝑧′ . In the case 

of a stable propagation of the crack considered here, k  is 

a positive constant dependent of the geometry of the 

sample and  vm  is the average speed imposed on the 

crack by the external loading. G0corresponds to the 

macroscopic restitution rate imposed on the system. We 

then obtain the evolution of the crack front at the 

disordered interface by numerically solving equation (1).  

Now let's go to the description of the breaking 

properties of our model. We begin by recalling the 

experimental procedure followed to prepare the sample 
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shown in FIG. I (a). Before gluing the two plexiglass 

plates together with a treatment thermal, one of the 

surfaces is sandblasted so that the interface is reinforced 

heterogeneously. This introduces variations in the 

fracture properties that we describe by a G c field. (x, z), 

called breaking energy.  

We then assume that this field is characterized 

by a correlation length ξ which corresponds to the typical 

size of the possibly  linked heterogeneities the diameter 

of the grains used for sanding [21]. This field of 

heterogeneity is then pulled into a Gaussian distribution 

of mean value G c and the standard deviation δG c. The 

heterogeneity of the material generates geometric 

disturbances of the crack front. These then generate 

variations in the rate of energy restitutions ( , ) along the 

front. In the the limit of weak disturbances, this variation 

( , ) can be calculated by the formula of Rice [3]. The 

equation of motion is then obtained using the fact that 

the local velocity of front is proportional to the 

difference between the rate of energy restitution and the 

energy of rupture[4]: 

 
1

𝜇

𝜕𝑓

𝜕𝑡
= 𝐺 𝑧, 𝑡 − 𝐺𝑐(𝑧, 𝑥 = 𝑓 𝑧, 𝑡                               (1) 

 

Numerical resolution of the crack front evolution 

equation 
To predict the dynamics of the crack front, we 

focus on the scaled evolution equation (1) and follow the 

numerical procedure used by Bonamy et al.[9], this 

equation is strongly nonlinear because of the presence of 

the integral term. To solve it, we go through a numerical 

resolution. This method consists in discretizing the front 

in Nz elements where Nz represents the size of the 

system in the direction along the front and Nx that 

corresponds to the direction of propagation. At a given 

time t, the configuration of the front is described by 

Nzvalues {f1 (t),  f2  (t), ⋯ , f Nz (t)}. We have also 

imposed periodic boundary conditions along the z axis.  

For each numerical simulation, we extract three 

quantities that will be used later for the statistical 

characterization of the forehead dynamics: 

 The spatio-temporal evolution is stored in the 

matrix (fi  (tj)). 

 The local velocity of the crack front is stored in the 

matrix (vij ). 

 The time spent by each point of the forehead is 

stored in the matrix (wij ). 

 

Results and discussion  

In order to validate our approach, we compare 

the predictions of our model on the statistical properties 

of the front with experimental observations [4], [5]. 

 

Roughness of the crack front 

From our model, we have numerically 

calculated the autocorrelation function of height 

fluctuations (Fig. II) defined by: 

∆𝑓 𝛿𝑧 = <  𝑓 𝑧 + 𝛿𝑧 −  𝑓 𝑧, 𝑡  >𝑧,𝑡

1
2                       (2) 

 

Figure II 
Correlation function of geometric disturbances of the 
crack front. We observe that this function follows a 
power law∆𝑓 (𝛿𝑧)  ∝  𝛿𝑧𝜁and𝜁 ∼  0.4. 
 
 We observe that this function follows a power 

This autocorrelation function is characterized by the 

difference in height corresponding to the difference in 

height between two points distant from the front. 

law∆f (δz)  ∝  δzζandζ ∼  0.4. This result is in 

agreement with the theoretical predictions for disordered 

elastic line trapping equations similar to equation (1) [5]. 

It is also in agreement with the experimental 

observations made on cracks propagating at the 

heterogeneous interface between two Plexiglas plates 

[1]. 

 

Correlation of speeds 

To characterize the local dynamics of the front, 

we adopt a method of analysis developed in [6] to 

calculate the time spent by the front at each point of the 

interface. From this method, we obtain a waiting time 

matrix w (z, x) to have the local velocities v (z, t) along 

the front. We can then calculate the autocorrelation 

function of local velocities in time (Figure III). Function 

follows an exponential law of form𝐶(𝛿𝑡)  ∝

𝑒−𝛿𝑡/𝑡∗
with𝑡∗ ∼ 

1

𝑣
 .  These results are in good agreement 

with recent observations [1]. 
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Figure III 

Standardized speed correlation functionC(δt) 

 

On the other hand, we observe that the local 

dynamics of the front are very intermittent, characterized 

by rapid jumps from the front from one position to 

another, also called avalanches. In the next section, we 

study the statistics of these avalanches. 

 

Statistical properties of avalanches 

We define avalanches as areas of surface S of 

the interface where the local velocity of the front is 

greater than a threshold value C. In Figure IVa, the size 

distribution of these avalanches is represented for 

different threshold values C It follows the following law: 

 

𝑃(𝑆)  ∼ 𝑆𝛾𝑒𝑥𝑝(−𝑆/𝑆∗)                             (3) 

 

After normalization of the curves by the 

quantity𝑆∗(𝑐), we obtain the evolution given in Figure. 

IVb, characterized by the exponent 𝛾 ~1.6. in good 

agreement with the experiments [6]. 

 

Figure IVa 

 

 

Figure IVb 

Avalanche size distribution before and after 

normalization 

 

Application to the prediction of the effective 

resistance of disordered solids 

 

 
 

Figure V  

Variation in effective macroscopic resistance as a 

function of resistance fluctuations at the microscopic 

scale 

 

As illustrated previously, our approach allows to 

describe the effect of the microstructure on the behavior 

of the crack. We will then use this approach to identify 

the properties of the microstructure of the material that 

govern its effective macroscopic resistance. Figure 5 

shows the predictions for normalized breaking energy 

variations
(𝐺𝑐−<𝐺𝑐>)

<𝐺𝑐>
by its average value< 𝐺𝑐 >= 𝐺𝑐

   a 

disordered fragile interface according to its standardized 

standard deviation𝜎𝐺𝑐 =  𝛿𝐺𝑐/< 𝐺𝑐 >. 

 

We observe two regimes: 

–a linear regime for which 𝐺𝑐  ∼  𝜎 𝐺𝑐 for𝜎 𝐺𝑐 <  0.1 

– and a regime in power law𝐺𝑐  ∼  𝜎𝐺𝑐
𝛼 for𝜎𝐺𝑐 >

 0.1with𝛼 ∼  1.6 
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In this case, the more material disorder increases 

significantly, the higher the effective resistance of the 

material interface. 

 

Conclusion 

From the stochastic description proposed here, 

it is possible to quantitatively describe the motion of a 

crack front in a disordered interface. This approach has 

also allowed us to predict the effect of the disorder of the 

interface on its effective resistance. In particular, it is 

observed that the effective resistance increases 

significantly with the disorder of the material. This 

suggests that the heterogeneities of solids at the 

microstructure level could be used to increase their 

strength. 
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