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Abstract 

In this article, a family of Finslerian space times describing stellar configurations obeying MIT-bag 

equation of state (EoS) is presented. Here we have adopted a new method of solving the field equation by 

assuming one of the metric potential along with the MIT-bag EoS and solve for the other metric potential. We 

have also assumed an anisotropic matter distribution which described physically possible matters since the EoS 

parameter 𝜔𝑟  and 𝜔𝑡  are less that unity. These solutions obey causality (𝑣𝑟 , 𝑣𝑡 ≤  1) and stability condition 

(0 ≤  |𝑣𝑡
2  −  𝑣𝑟

2|  ≤  1). These solutions are well-behaved at the interior except at the centre 𝑟 = 0 since it 

contains singularity. The properties of the stellar configurations described by these solutions are solely depends 

on parameter  𝑛. For small values of 𝑛 corresponds to softer EoSs that yields less massive and smaller 

configurations, however, larger values of 𝑛 gives more denser, massive and bigger configurations where the 

EoSs are stiffer. It has been observed that the anisotropy is more for smaller values of 𝑛 than bigger values. 

Above all, these solutions satisfy all the energy conditions implying that these can represent physical matters. 

Two models of well-known compact stars are also presented and indeed the calculated values of masses and 

radii are well match with the observed ones. 
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Introduction 

 In the past few decades, researchers are 

more attracting towards the formation, structure 

and evolution of compact stars. Now it is well-

known that compact stars like neutron stars (NS) 

may form through the process of type-Ia and 

type-II supernovae. It is still uncertain about the 

exact matter composition of NS. Indeed, we are 

able to understand some of the possible matter 

that may present such as free neutrons in 

superfluid state, free protons in superconducting 

state with some electrons and solid nuclei. Many 

theories have been proposed that asymptotically 

free quarks may also exist at the core of NS.  

 

Pions and Kaons are also physically 

favoured to exist in condensate state. 

Despite of their internal structure, 

general relativist are trying to construct solutions 

of Einstein’s field equations to model such 

compact stars. Many solutions has been 

discovered, however, only few of them are 

appreciated physically (Delgaty & Lake 1998; 

Singh et al. 2015; Singh & Pant 2015a; Bhar 

2015a,b). Other than the Einsteinian gravity, 

many researchers are also devoted to alternative 

or modified theories of gravity. 

Gauss-Bonnet (GB) extended the 

Einstein’s theory of gravity to fifth

dimension by adding quadratic terms on 

Riemann tensor in Einstein-Hilbert action. The 

reason why we want to modify Einstein-Hilbert 

action is that the higher order derivative 

curvature terms makes non-zero contribution to 

the dynamics. Jhingan & Ghosh (2010) studied 

spherically symmetric inhomogeneous dust and  
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null dust in GB gravity with non-zero coupling 

constant modifies the causal structure of black 

holes compared to the standard 5-D general 

relativistic case. The study of Vaidya radiating 

black-holes in GB gravity has revealed that the 

location of the horizons is changed as compared 

to the standard 4-D gravity (Ghosh & Deshkar 

2008). The Schwarzschild interior solution to 

describe a uniform density sphere in higher 

dimensions requires a necessary and sufficient 

condition that the number of dimensions should 

be at least four i.e. 𝑑 ≥ 4 (Dadhich et al. 2010). 

Bhar et al. (2017) have also shown that the 
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central density and pressure are higher in GB-

gravity than the 5-D Einstein gravity. 
The higher order theory of gravity was 

proposed by Lovelock (1971, 1972) generalizing 

the Einstein’s gravity to 𝑁𝑡ℎ−order gravity in 

𝑑−dimensions. The Einstein-Hilbert Lagrangian 

was now generalized into Lanczos-Lovelock 

Lagrangian that includes homogeneous 

polynomials of degree 𝑁 in Riemann curvature. 

Remarkable results of Lovelock gravity are those 

includes cosmological term 𝑁 = 0, Einstein 

gravity for 𝑁 = 1 and quadratic GB for 𝑁 = 2, 

and so on. It is shown that black hole in 

Lovelock gravity possesses thermodynamical 

universality i.e. the temperature and entropy bear 

the same relation to the event horizon radius as 

the Einstein black hole in 3-D and 4-D 

irrespective of the Lovelock order 𝑁 (Dadhich et 

al. 2013). 

Researchers are also eager to quantize 

the gravity so that all the four fundamental forces 

can be unify into a single theory (The Theory of 

Everything). However, it is still a big and open 

problem on how to quantize gravity. However, 

GR is not renormalizable and hence can’t be 

quantized. Indeed, Utiyama & De-Witt (1962) 

and Stelle (1977) shows that gravity is possible 

to renormalize if one includes higher order 

curvature terms in Einstein-Hilbert action. 

Hence, one of the most promising theory of 

gravity that includes higher order curvature 

terms is 𝑓(𝑅) −gravity. In 𝑓(𝑅) −gravity the 

Einstein-Hilbert action i.e. 

(1)                        R 4

16

1
 −= gdx

EH
S


 

is modified into more general form as 

(2)                    (R) 4

16

1
fgdx

FR
S  −=


 

where g is the determinant of the metric tensor 

and 𝑅 is the Ricci scalar. The reason why we 

choose only 𝑓(𝑅) is because of its simplicity and 

it also avoids Ostrogradski instability (Woodard 

2007). Using the formalism of 𝑓(𝑅)−gravity 

Bohmer et al. (2008) shown the motion of test 

particles around galaxies i.e. rotational curves of 

galaxies can be explain without the inclusion of 

hypothetical dark matter. They also found that 

the form of 𝑓(𝑅) that described the dynamics of 

galaxies as 

(3)                   
4

dx g- 
21

R
016

1 vtgf
FR

S
+

= 
  

i.e.  𝑓(𝑅) = 𝑓0𝑅1+𝑣𝑡𝑔
2

, where 𝑓0 is a positive 

constant and 𝑣𝑡𝑔 is the tangential velocity of the 

test particles. 

Many authors have also used the 

𝑓(𝑅)−gravity formalism in describing 

astrophysical object such as compact stars 

(Zubair & Abbas 2016; Capozziello et al. 2011, 

2012). Another promising alternative theory of 

gravity was proposed by Finsler (Bao et al. 

2000) now known as Finslerian gravity. Here the 

Riemann geometry is a special case where the 

four-velocity vector is treated as independent 

variable. The first self-consistent Finsler 

geometry was formulated by Cartan (1934). 

Further, Cartan 𝑑−connected were first 

introduced by Horvath (1950) and many 

researchers start using Finsler gravity as 

applications in physics (Vacaru 2010, 2012; 

Schreck 2015). 

Even though, it is not an easy task to 

solve field equations in Finsler geometry exactly. 

Vacaru (1997, 1996) derived the Finsler gravity 

and locally anisotropic spinors in the low energy 

limits of superstring/supergravity theories with 

N-connection structure where the velocity type 

coordinates are treated as extra-dimensions. 

Anholonomic frame deofrmation method in 

Finsler geometry was used to construct generic 

off-diagonal exact solutions in various modified 

theories of gravity (Vacaru 2012; Stavrinos & 

Vacaru 2013; Rajpoot & Vacaru 2015). Recently, 

Rahaman et al. (2015, 2016) have used Finsler 

geometry to described compact stars structure 

and worm holes. By assuming a relationship 

between mass function and a metric coefficient 

along with a linear EoS, they discovered a new 

exact solution to model compact stars. 

In this article, we have adopted a new 

method in the Finsler geometry to solve the field 

equations by assuming one of the metric 

potential with the MIT-bag EoS. These new 

solutions describe matter distributions with 

anisotropy in pressure. The article is organized 

as follows: sect. 2 discussed Einstein field 

equations in Finsler geometry, sect. 3 deals with 

the method of generating the new solutions, sect. 

4 elaborate the properties of these new solutions, 

in sect. 5 the matching of interior and exterior 

spacetime is performed at the boundary, sect. 6 is 

devoted to equilibrium and stability analysis via 

various methods and last sect. 7 discussed the 

physical applications of these new solutions. 

 

Einstein field equations in Finslerian  

geometry 

The Finslerian geometry is constructed 

from Finsler structure F which is defined as 
(𝑥, µ𝑦) =  µ 𝐹(𝑥, 𝑦)      ∀  µ > 0.           (4) 
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Here 𝑥 ∈ 𝑀 represents position and 𝑦 = 𝑑𝑥/𝑑𝑡, 

the velocity. The metric describing Finslerian 

geometry is given as 

(5)                  2

2

1












 F

vyy
v

g


The geodesic equation in Finsler manifold is expressed as 

 

 

The geodesic equation in Finsler manifold is 

expressed as 

(6)                                  02
2

2
=+




G

dT

xd

 

where 𝐺µ  is called the geodesic spray coefficients 

defined as 
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The Ricci scalar in Finsler geometry is written  
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Here 


vp
R depends on connections and 



v
R

depends only on the Finsler structure 𝐹. 

Assuming the Finsler structure of the form (Li & 

Chang 2014)
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The Finsler metric are given below 
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where
ij

g are derived from F  and (𝜃, 𝜙) ≡

(𝑖, 𝑗).  

The components of geodesic spray coefficient 

becomes 
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where the prime represents differentiation with 

respect to 𝑟 and the G is the geodesic spray 

coefficients derived by F . Substituting (13)-(16) 

to (8) we the expression of Ricci scalar as 
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provided R is the Ricci scalar correspond to F . 

Akbar-Zadeh (1988) first introduced the notion 

of Ricci tensor in the Finsler geometry as 

(18)                  2

2
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
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The scalar curvature in the Finsler geometry is 

defined as  𝑆 = 𝑔µ𝜈𝑅µ𝜈 .  

Now the modified Einstein’s tensor is given by 

(19)                          
2

1
S

v
g

v
R

v
G


−

 

The covariant conservation of 𝐺µ𝜈 in Finsler 

geometry i.e. 0; =
vG  was proved by Li & 

Chang (2014). 

We can now able to write the Einstein’s tensor in 

Finsler geometry as 
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Finally, we can write the field equations in 

Finsler space-time as 

(23)                                       8





v
T

Fv
G =

with


vT is the energy-momentum tensor and 4πF 

is expressing the volume of F  in the field 

equation.  

   Assuming a matter distribution with anisotropy 

in pressure, the form of energy-momentum 

tensor can be written as 
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where 𝑣µ𝑣µ = −𝜒µ𝜒µ = 1, 𝑝𝑟 and 𝑝𝑡  denote 

radial and transverse pressures respectively, 𝜌 is 

the density of the fluid distribution, 𝑣µ  the four 

velocity and 𝜒µ  is the unit space-like vector in 

the radial direction. 

On using the energy-momentum tensor in (24) 

along with the field equation (23) we get 

(27)                  
''

4

'

22

'

2

'

2

"
)(8

(26)             
22

1'
)(8

(25)               
22

1

2

'
)(8









+

−−+=

−+=

+−=

B

B

A

A

AB

B

rA

A

rAB

B

AB

B
r

t
p

F

rArrAB

B
r

r
p

F

rArrA

A
r

F









    

Figure 1. Variation of 𝑝𝑟 and 𝑝𝑡  with radial coordinate r for 𝑐 = 0.001, 𝛼 = 0.7, 𝛽 = 0.001, 𝜆 = 101 

and  𝑘 = 0.01. 

    
 

Figure 2. Variation of 𝜌 and −Δ with radial coordinate r for 𝑐 = 0.001, 𝛼 = 0.7, 𝛽 = 0.001, 𝜆 = 101 

and  𝑘 = 0.01. 
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Generating a new family of solutions in 

Finsler geometry 

Rahaman et al. (2015) have generated a 

new solution in Finsler space-time by assuming a 

particular for of mass function 𝑚(𝑟) which was 

link with the metric 𝐴 as 𝐴−1 =  𝜆 − 2𝐺𝑚(𝑟)/𝑟. 

However, in this paper we are using a new 

approach by assuming one of the metric 

potential. Here we have assumed 𝐴(𝑟) in the 

background of MIT-bag EoS 

𝐴(𝑟) =  (𝜆 +  𝑐𝑟2)𝑛   ∀  𝑛 > 1       (28) 

𝑝(𝑟) = 𝛼𝜌(𝑟) − 𝛽        (29)  

where 𝑛 is a real number, 𝑐 is a constant which is 

determined from the boundary conditions.  

On using (25) and (26) in (29) we get 
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Figure 3. Variation of 𝜔𝑟 and 𝜔𝑡 with radial coordinate r for 𝑐 = 0.001, 𝛼 = 0.7, 𝛽 = 0.001, 𝜆 = 101 

and  𝑘 = 0.01. 

 

    

Figure 4. Variation of 𝑚(𝑟)/𝑀ʘ and 𝑢(𝑟) with radial coordinate r for 𝑐 = 0.001, 𝛼 = 0.7, 𝛽 = 0.001, 𝜆 =
101 and  𝑘 = 0.01. 

 

Putting (28) in (30) we get 
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where 2F1 is the usual hypergeometric 

function defined as
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Here (𝑥)𝑛 is the Pochhammer symbol defined as 
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Figure 5. Variation of 𝑧𝑠 and TOV-equation with radial coordinate r for 𝑐 = 0.001, 𝛼 = 0.7, 𝛽 =
0.001, 𝜆 = 101 and  𝑘 = 0.01. 

 

On using (28) and (31) in (25)-(27) we can get 

expressions of all the physical parameters as 
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The variations of all the above physical parameters 

are shown in Figure 1 and 2. The equation of state 

parameters 𝜔𝑟 =  𝑝𝑟/𝜌 and 𝜔𝑡 =  𝑝𝑡/𝜌 are always 

less than unity signifying these solutions can 

represent physically possible matters, see Figure 3. 
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Figure 6. Variation of adiabatic index and speed of sound with radial coordinate r for 𝑐 = 0.001, 𝛼 =
0.7, 𝛽 = 0.001, 𝜆 = 101 and  𝑘 = 0.01. 

 

 

  

    

Figure 7. Variation of stability factor and energy conditions with radial coordinate r for 𝑐 = 0.001, 𝛼 =
0.7, 𝛽 = 0.001, 𝜆 = 101 and  𝑘 = 0.01. 
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and here we avoid to write the 𝑑𝑝𝑡/𝑑𝑟 due to its 

lengthy expression. 

 

Properties of the new model 

This new solutions contains a 

singularity at the center where density and 

pressure are infinite i.e. 
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However, 𝜔𝑟𝑐 ≡  𝑝𝑟𝑐/𝜌𝑐  =  𝛼 and 𝜔𝑡𝑐  ≡
 𝑝𝑡𝑐/𝜌𝑐  =  (𝛼 +  1)2(𝜆𝑛 + 1 −  1)/4 are finite 
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at the center and thus Zeldovich’s condition i.e. 

𝑝𝑟𝑐/𝜌𝑐 at centre should be ≤  1. Therefore, 

(50)                                        1

c

rc
= 



p

Here we can see that the Zeldovich’s condition 

𝛼 ≤  1 also imply the causality condition i.e. 

𝑑𝑝𝑟/𝑑𝜌 =  𝛼 ≤ 1. The condition 𝜔𝑡𝑐 >  0 also 

requires λ to be greater than unity. 

 

Matching of physical boundary conditions 

The exterior spacetime in Finslerian 

spacetime is given by Li & Chang (2014) as 
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By matching the interior solution (10) and 

exterior solution (51) at the boundary 𝑟 = 𝑟𝑏 we 

obtain 
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Table 1. Optimization of masses and radii of few well known compact star candidates. 

Compact star 𝑐              𝛼            𝛽        𝑛         Observed values       Calculated values        𝑢         𝑧𝑠 

          (km-2)       (km-2)                              𝑀/𝑀ʘ               𝑅(km)          𝑀/𝑀ʘ        𝑅(km) 

4U 1538-52    0.01073     0.23        0.001    2.2     0.87 ± 0.07   7.866 ± 0.21   0.871       7.86        0.222    

0.752 

SMC X-4        0.00751    0.35        0.001    2.7      1.29 ± 0.05   8.831 ± 0.09   1.290       8.83        0.292    

0.914 
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Using the boundary condition (52-54), we get
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and we have chosen λ, M and rb as free 

parameters and the rest of the constants are 

determined from the Eqs. (55-57). 

The mass-radius relation, compactness parameter 

and surface red-shift of the solution can be 

determined using the equation given below: 
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The variations of mass, compactness parameter 

and surface red-shift are shown in Figure 4 and 5 
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(left) respectively. 

 

Equilibrium and stability conditions 

condition for equilibrium 

For a stellar system in equilibrium under 

different forces, the generalized Tolman-

Oppenheimer-Volkoff (TOV) equation must be 

satisfied. The TOV equation in Finsler space-

time was proposed by Varela et al. (2010) as 

(61)      0
2

2

)(
=


+−

+
−

rdr

rdp

B

A

r

rpgM 

 

 where Mg(r) is the effective gravitational mass 

contained within a sphere of radius r and is 

defined by the Tolman-Whittaker formula viz., 
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Equation (61) can be written in terms of 

balanced force equation due to anisotropy (Fa), 

gravity (Fg) and hydrostatic (Fh) i.e. 

Fg+ Fh+ Fa = 0                  (63) 

Here
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The TOV equation (63) can be represented 

graphically showing the interplay amongst Fg, Fh 

and Fa required to bring about equilibrium as 

evidenced in Figure 5 (right). 

 

Relativistic adiabatic index and stability 

For a relativistic anisotropic sphere the 

stability is related to the adiabatic index Γ, the 

ratio of two specific heats, defined by Chan et al. 

(1993), 
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Now 𝛤𝑟 > 4/3 gives the condition for 

the stability of a Newtonian sphere and Γ = 4/3 

being the condition for a neutral equilibrium 

proposed by Bondi (1964). This condition 

changes for a relativistic isotropic sphere due to 

the regenerative effect of pressure, which renders 

the sphere more unstable. For an anisotropic 

general relativistic sphere the situation becomes 

more complicated, because the stability will 

depend on the type of anisotropy. For an 

anisotropic relativistic sphere the stability 

condition is given by Chan et al. (1993), 
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where, pr0, pt0, and ρ0 are the initial radial, 

tangential, and energy density in static 

equilibrium satisfying (61). The first and last 

term inside the square brackets represent the 

anisotropic and relativistic corrections 

respectively and both the quantities are positive 

which increase the unstable range of 𝛤𝑟 (Herrera 

et al. 1979; Chan et al. 1993). From the Figure 6 

(left), it is clearly seen that 𝛤𝑟  for these solutions 

is always more that the Newtonian fluids. 

 

Causality and stability condition 

The radial and tangential speeds of 

sound of our compact star model are given by, 

(69)        , 22
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The profile of vr
2 and vt

2 are given in Figure 6 

(right) which indicates that both the radial and 

transverse velocity satisfy the causality 

conditions i.e. both vr
2, vt

2 are less than 1 and 

monotonic decreasing function of  r (Figure 6 

right). 

The stability of anisotropic stars under 

the radial perturbations is studied by using the 

concept of Herrera (1992) known as Hererra’s 

“cracking” method. Using the concept of 

cracking, Abreu (1992) showed that the region of 

the anisotropic fluid sphere where 0 ≤ |vt
2 − vr

2| ≤ 

1 (see Figure 7 left) is a stable configuration. 

 

Results and Discussions  

We have successfully explored a family 

of new exact solutions by assuming a particular 

form of metric coefficient in the background of 

MIT-bag EoS. These new solutions can describe 

bounded configurations which are anisotropic in 

pressure. These solutions are regular and well 

behaved except at the center. Since the EoS 

parameters are less than unity, these solutions 

describe a physically possible fluid distributions. 

This very result is also supported further due to 

the solution satisfies all the energy conditions. 

Since the speed of sound at the interior are less 

than unity, these solutions obey causality 

condition. Modelling of static and stable 

bounded configurations are also possible since 

these solutions also satisfies the static and 
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stability conditions i.e. 0 ≤ |vt
2 − vr

2| ≤ 1 and 𝛤𝑟 >
4/3. An interesting property of these solutions is 

that the Zeldovich’s condition directly imply the 

causality condition since 𝑣𝑟
2  =  𝛼. On the other 

hand, the stellar configurations described by 

these solutions are solely depends on parameter 

n. For small values of n corresponds to softer 

EoSs that yields less massive and smaller 

configurations however, larger values of n gives 

more denser, massive and bigger configurations 

where the EoSs are stiffer. It is also observed that 

the anisotropy is more for smaller values of n. 

Indeed, the central values of compactness 

parameter and surface red-shift are non-zero 

since the metric potential 𝐴(𝑟) is not unity at 

𝑟 = 0 which was needed to be unity in Einstein’s 

gravity. Finally, we present two models of 

compact stars in Table 1, 4U 153852 and SMC 

X-4 where the observed masses and radii are 

well fitted with the calculated values from the 

presented solutions (Gangopadhyay et al. 2013). 
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