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Abstract 

Cardiopulmonary bypass suppresses circulating thyroid hormone levels. We hypothesized that triiodothyronine 

deficiency in the developing heart after bypass may adversely affect cardiac function reserve postoperatively. We consider 

two identical, parallel M/M/1 queues. Both queues are fed by a Poisson arrival stream of rate 𝜆 and have service rates 

equal to 𝜇. When both queues are non empty, the two systems behave independently of each other. However, when one of 

the queues becomes empty, the corresponding server helps in the other queue. This is called head of the line processor 

sharing. We study this model in the heavy traffic limit, where 𝜌 = 𝜆 𝜇 → 1 . For, Cardiopulmonary bypass we use the 

formula that the heavy traffic diffusion approximation and the time dependent probability of the diffusion approximation to 

the joint queue length process. 
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Introduction  

Circulating levels of the thyroid hormones, 

triiodothyronine (𝑇3) and thyroxine (𝑇4), decrease 

substantially during and after cardiopulmonary bypass 

(CPB) [9]. Possible responsible mechanisms include 

blood dilution during CPB, alterations in peripheral 𝑇3 

metabolism, and central disruption of hypothalamic 

pituitary thyroid control included by nonpulsatile flow 

[16]. Regardless of the operative mechanisms, 

depression of serum 𝑇3 and 𝑇4 levels persists for several 

days after CPB in both adults and children. Several 

investigators have postulated that thyroid hormone 

deficiencies can contribute to myocardial depression 

observed after cardiac surgery and CPB 𝑇3 or 𝑇4 

supplementation after coronary artery bypass provides 

short term increases in cardiac performance in adults, 

which result from a direct inotropic effect on the heart 

and decrease in systemic vascular resistance. 

 The developing heart normally undergoes 

thyroid promoted maturation of physiologic and 

metabolic processes, which can increase cardiac 

contractile function and reserve [18] & [21]. However, 

operation for congenital heart disease accompanied by 

CPB can theoretically disturb this maturation at least 

temporarily by decreasing circulating thyroid hormone 

levels. Thus, depression of thyroid hormone levels could 
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limit cardiac contractile responses during the vulnerable 

postoperative period. Accordingly, we postulated that 𝑇3  

repletion in the immediate postoperative period should 

improve hemodynamic parameters in infants undergoing 

cardiac surgery with CPB. This current study represents 

the initial phase in evaluation of 𝑇3 repletion in infants 

undergoing CPB. 

Queuing systems are used in a wide variety of 

applications, such as computer and communications 

networks and manufacturing systems. In analyzing such 

models, one typically wishes to compute the probability 

distribution of some stochastic process. Obtaining the 

full time dependent distribution is a difficult task for all 

but simple models. Here we consider the following 

model, which is sometimes referred to as head of the line 

processor sharing of parallel queues. There are two 

parallel M/M/1 queues, each fed by independent Poisson 

arrival streams with rate 𝜆. Each of the two servers 

works at rate 𝜇. When both queues are non empty, each 

server tends to its own queue. However, if the first queue 

becomes empty, the first server helps the server in the 

other queue (same as for second), thereby providing a 

service rate of 2𝜇 during the idle period.  

 

A Diffusion Model 
The steady state joint queue length distribution 

for this model was analyzed by [8] and a more general 

model which allows, e.g., for different service rates was 

analyzed. In [8], the authors obtained an expression for 

the two dimensional generating function of the joint 

queue length distribution in terms of elliptic integrals. 
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The inherent complexity of the solutions in [8] led other 

authors to investigate asymptotic properties of these 

solutions, in order to gain more qualitative insights. 

The heavy traffic limit is defined as 𝜌 =
𝜆

𝜇 → 1 . In this limit, the joint queue length process 

may be approximated by a diffusion process, whose 

analysis proves to be simpler than that of the discrete 

model. In particular, [7] and [10] obtained a relatively 

simple answer for the steady state distribution of the 

diffusion approximation. Also, some exact [10] and 

asymptotic [7] results were obtained for more general 

models, which allow different service rates and 

discriminatory processor sharing. Diffusion 

approximations were also used by [5] to treat more 

complicated models, with more than two queues. Related 

models with finite capacity were analyzed by [10]. 

Applications of these models include the buffering of 

channels in wide area data networks [10]. 

In this paper we compute the time dependent 

distribution for the heavy traffic diffusion model, thereby 

obtaining information on how steady state is achieved, 

and other transient phenomena. Denoting by 𝑝(𝑚, 𝑛, 𝑡) 

the joint probability that 𝑁1(𝑡) = 𝑚 and 𝑁2(𝑡) = 𝑛 we 

obtain the approximation 𝑝(𝑚, 𝑛, 𝑡)~𝜖2𝑃(𝑥, 𝑦, 𝑇), where 

𝜖 = 1 − 𝜌 and (𝑥, 𝑦, 𝑇) = (𝜖𝑚, 𝜖𝑛, 𝜇𝜖2𝑡) are scaled 

space and time variables. We shall obtain explicit, albeit 

complicated, expressions for 𝑃 and then evaluate these 

asymptotically for various ranges of space and time. This 

leads to very simple formulas that clearly show the basic 

qualitative structure of the joint density function. 

In particular, we show that there is a surface 

𝑇 = 𝑇∗ 𝑥, 𝑦  in the (𝑥, 𝑦, 𝑇) space so that for 𝑇 > 𝑇∗, the 

process has settled to its steady state distribution, while 

for 𝑇 > 𝑇∗, the probability distribution depends upon 

time as well as on the initial conditions. We shall also 

consider the unstable case where 𝜌 > 1 in the heavy 

traffic limit. Here the process is transient and the queue 

lengths tend to grow without bound. We shall show that 

the two queues are nevertheless coupled in this limit, and 

obtain a simple quantitative measure of this interaction. 

In the asymptotic analysis, we shall allow for 

space (𝑥, 𝑦) to be large as well as time 𝑇. We contrast 

this to relaxation rate asymptotics, which are discussed 

in the book of [4] for single server queues and by [1] for 

two tandem M/M/1 queues. These asymptotics would 

assume that the space variables are held fixed and use the 

approach to equilibrium in the form 𝑃 𝑥, 𝑦𝑇 −
𝑃𝑒𝑞 (𝑥, 𝑦)~𝑇𝑣𝑒−𝛼𝑇𝛽(𝑥, 𝑦), where 𝛼 = relaxation rate and 

𝑡 = constants. Here 𝑃𝑒𝑞  is the equilibrium density, which 

is non zero only if 𝜌 < 1. We believe that the 

asymptotics presented here give a more global 

description of the transient distribution. We have 

previously obtained analogous asymptotic results for 

various models with one space dimension [7] and [23]. 

In the probability literature, these types of asymptotics 

are sometimes referred to as large deviations theory. 

However, such theory generally only gives the 

exponential rate of growth or decay of the desired 

quantity. In contrast, here we give very precise results 

and also indicate how to obtain full asymptotic series. 

We obtain the results by the saddle point and related 

methods for evaluating integrals [3]. 

We also mention related work on the M/M/1-PS 

queue and more general models by [3], [19], [17], and 

[22]. These authors consider single queues with the 

processor sharing service discipline. The main focus in 

these papers is the calculation of the sojourn time 

distribution of a tagged customer, as well as its moments. 

The queue length distribution in the M/M/1-PS model is 

the same for the PS and FIFO service disciplines. It is the 

sojourn time distribution that is very different for PS and 

FIFO service. If we condition the sojourn time on the 

total service that the tagged customer must receive, then 

the PS discipline is much more efficient at servicing 

shorter jobs. In [3], the M/M/1-PS model and computed 

the Laplace transform of the sojourn time distribution, 

conditioned on the job size. In [19], the GI/M/1-PS 

model is analyzed. In particular, simple expressions are 

given for the first two sojourn time moments. The 

M/G/1-PS model was analyzed by [17]. The response 

time distribution is computed in [17], the transient 

distribution of the number of customers present is 

analyzed a good survey of work on processor shared 

queues appears. In [17], the author extended the results 

to calculate the joint distribution of the sojourn time and 

of the number of customers present upon the departure of 

the tagged customer. Some approximations for the more 

difficult GI/G/1-PS model are given in [22]. 

We believe that the structure of 𝑃(𝑥, 𝑦, 𝑇) 

revealed here will also arise in other diffusion models 

corresponding to two or more coupled queues. Other 

explicit solutions to diffusion models arising in queueing 

networks are given in [15], [6] and [23]. The steady state 

densities of a large class of two dimensional diffusion 

models according to their tail behaviors as 𝑥 and/or 

𝑦 → ∞. We believe that such a classification should also 

be possible for the transient behavior, and this work may 

be viewed as a first step in that direction. We also 

mention that the diffusion approximation analysis 

presented here should be extendible to problems with 

general arrivals and/or service. However, these 

generalizations are likely to lead to somewhat more 

complicated PDEs and boundary conditions, then those 

in (10)-(12). 

 

Formation of Model 

We let 𝑁1(𝑡) and 𝑁2(𝑡) be the number of 

customers in the first and second queue. We define the 

transition probability distribution by 

                            𝑝 𝑚, 𝑛, 𝑡 = 𝑝(𝑚, 𝑛, 𝑡; 𝑚0, 𝑛0)  

                                             = 𝑃𝑟𝑜𝑏 𝑁1 𝑡 =
𝑚, 𝑁2 𝑡 = 𝑛|𝑁1 0 = 𝑚0, 𝑁1 0 = 𝑛0                     (1) 

In terms of (𝑚, 𝑛), the distribution (1) satisfies the 

forward equation 

                             𝑝𝑡 𝑚, 𝑛, 𝑡 = 𝜆 𝑝 𝑚 − 1, 𝑛, 𝑡 +
𝑝 𝑚, 𝑛 − 1, 𝑡 − 2𝑝(𝑚, 𝑛, 𝑡)   
                                                   +𝜇 𝑝 𝑚 + 1, 𝑛, 𝑡 +
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𝑝 𝑚, 𝑛 + 1, 𝑡 − 2𝑝(𝑚, 𝑛, 𝑡)                                        (2) 

with the boundary conditions 

                             𝑝𝑡 𝑚, 0, 𝑡 = 𝜆 𝑝 𝑚 − 1,0, 𝑡 −
2𝑝 𝑚, 0, 𝑡     
                                                   +2𝜇 𝑝 𝑚 + 1,0, 𝑡 −
𝑝 𝑚, 0, 𝑡  + 𝜇𝑝 𝑚, 1, 𝑡                                               (3) 

                             𝑝𝑡 0, 𝑛, 𝑡 = 𝜆 𝑝 0, 𝑛 − 1, 𝑡 −
2𝑝(0, 𝑛, 𝑡)   
                                                   +2𝜇 𝑝 0, 𝑛 + 1, 𝑡 −
𝑝(0, 𝑛, 𝑡) + 𝜇𝑝 1, 𝑛, 𝑡                                                 (4) 

the corner condition 

                             𝑝𝑡 0,0, 𝑡 = 2𝜇 𝑝 1,0, 𝑡 +
𝑝(0,1, 𝑡) − 2𝜆𝑝 0,0, 𝑡                                                 (5) 

and the initial condition 

                                                 𝑝 𝑚, 𝑛, 𝑡 =
𝛿 𝑚, 𝑚0 𝛿 𝑛, 𝑛0                                                          (6) 

Here subscripts denote partial derivatives and 𝛿 is the 

Kronecker delta symbol. 

We study the model in the heavy traffic 

limit, where 𝜌 = 𝜆
𝜇 → 1 . Formally, we define the small 

positive parameter 𝜖 by 

                      1 − 𝜌 = 1 −
𝜆

𝜇
= 𝜖𝛼                               (7) 

and scale space and time by 𝜖 as follows 

    𝑚 =
𝑥

𝜖
, 𝑛 =

𝑦

𝜖
, 𝑡 =

𝑇

𝜇𝜖2 , 𝑚0 =
𝑥0

𝜖
, 𝑛0 =

𝑦0

𝜖
               (8) 

Note that this means that the initial queue lengths are 

assumed to be large, of the order 𝑂(𝜖−1). 

If the queue is stable (i.e., 𝜌 < 1), we will set 

𝛼 = ±1, and then (7) defines in terms of 𝜌. In the 

unstable case (𝜌 > 1), we will set 𝛼 = −1. If 𝜌 = 1, we 

take 𝛼 = 0 and then (8) corresponds to viewing 

𝑝(𝑚, 𝑛, 𝑡) on large space/time scales, with 𝑚, 𝑛, 𝑡 → ∞ 

and 𝑚  𝑡 , 𝑛  𝑡  fixed. 

With (8), we expand the probability distribution as 

                                   𝑝 𝑚, 𝑛, 𝑡 = 𝜖2 𝑃 𝑥, 𝑦, 𝑇 +

𝜖𝑃 1  𝑥, 𝑦, 𝑇 + ⋯                                                       (9) 

From (2) - (4) and (6), we find that the leading term 𝑃 

satisfies the PDE 

                                      𝑃𝑇 = 𝑃𝑥𝑥 + 𝑃𝑦𝑦 + 𝛼 𝑃𝑥 +

𝑃𝑦 ; 𝑥, 𝑦, 𝑇 > 0                                                           (10) 

the boundary conditions 

                                𝑃𝑥 0, 𝑦, 𝑇 + 𝑃𝑦 0, 𝑦, 𝑇 +

𝛼𝑃 0, 𝑦, 𝑇 = 0; 𝑦, 𝑇 > 0                                          (11) 

                                𝑃𝑥 𝑥, 0, 𝑇 + 𝑃𝑦  𝑥, 0, 𝑇 +

𝛼𝑃 𝑥, 0, 𝑇 = 0; 𝑥, 𝑇 > 0                                          (12) 

and the initial condition 

      𝑃 𝑥, 𝑦, 0 = 𝛿 𝑥 − 𝑥0 𝛿 𝑦 − 𝑦0                        (13) 

We also have the normalization condition 

         𝑃 𝑥, 𝑦, 𝑇 𝑑𝑥𝑑𝑦 = 1
∞

0

∞

0
 for all 𝑇 ≥ 0                                                                                                                                                                                                           

                                                                             (14) 

We do not consider the corner condition (5) in 

formulating the heavy traffic diffusion model. We will 

show that 𝑃(𝑥, 𝑦, 𝑇) becomes infinite near the origin 

𝑥 = 𝑦 = 0, and hence (9) cannot be the correct 

asymptotic approximation to the discrete probabilities 

𝑝(𝑚, 𝑛, 𝑡) for small values of 𝑥 and 𝑦. A proper analysis 

of the corner region would involve analyzing the discrete 

model (2)-(5), with 𝜇 = 𝜆 + 𝜇𝜖𝛼. However, we will 

show that such a detailed treatment is not necessary to 

determine 𝑃(𝑥, 𝑦, 𝑇), which is the heavy traffic diffusion 

approximation valid away from the corner. The total 

probability mass in the corner region is asymptotically 

smaller than that on the (𝑥, 𝑦) scale. However, 

calculating the higher order terms in the series (9) would 

necessitate a careful treatment of the corner region. We 

shall obtain an explicit solution for the leading order 

diffusion approximation 𝑃(𝑥, 𝑦, 𝑇). Then we shall obtain 

detailed asymptotic results for this limiting density, that 

apply for 𝑥 and/or 𝑦 and/or 𝑇 large.  

 

Note 

 With the help of the equations (10) – (14), we 

get the following results 

(a) 𝑥, 𝑦, 𝑇 → ∞ then 

𝑃 𝑥, 𝑦, 𝑇 ~
 2

𝜋

𝑥𝑦

𝑇 𝑥+𝑦 

1

 𝑥2+𝑦2
𝑒𝑥𝑝  −

𝑥2+𝑦2

4𝑇
   

(b) 𝑦 = 𝑂 1 ; 𝑥, 𝑇 → ∞ then 

𝑃 𝑥, 𝑦, 𝑇 ~𝑒𝑥𝑝  −
𝑥2

4𝑇
 

 2

𝜋𝑇𝑥
 𝑦 +

2𝑇

𝑥
   

(c) 𝑥 = 𝑂 1 ; 𝑦, 𝑇 → ∞ then 

𝑃 𝑥, 𝑦, 𝑇 ~𝑒𝑥𝑝  −
𝑦2

4𝑇
 

 2

𝜋𝑇𝑦
 𝑥 +

2𝑇

𝑦
  

(d) 𝑥, 𝑦 = 𝑂 1 ; 𝑇 → ∞ then 

𝑃 𝑥, 𝑦, 𝑇 ~
 2

𝜋
3

2  𝑇
 

𝑥+𝑦

𝑥2+𝑦2 

(e) 𝑥2 + 𝑦2 = 𝑂 𝑇 ; 𝑇 → ∞                               then 

                    

𝑃 𝑥, 𝑦, 𝑇 ~
 2

4𝜋
3

2 𝑇
5

2 
  

 𝑥+𝑢  𝑦+𝑢 

𝜂3 1−𝜂
 𝑒𝑥𝑝  −

 𝑥+𝑢 2 𝑦+𝑢 2

4𝑇𝜂
 

1

0

∞

0
𝑑𝜂𝑑𝑢 

  

We observe that if 𝜌 ≥ 1, 𝜌 → 0 as 𝑇 → ∞ for 

any fixed 𝑥, 𝑦. The expression in part (e) is in fact the 

exact result for 𝑃 = 𝑃𝐼𝐼  when 𝛼 = 0; for 𝑇 → ∞ with 

𝑥, 𝑦 = 𝑂  𝑇 , this cannot be simplified any further. If 

we specialize the result to 𝑥 − 𝑇 = 𝑂  𝑇  and 𝑦 − 𝑇 =

𝑂  𝑇 , we obtain 

𝐿𝑒𝑥𝑝Ф~
1

4𝜋𝑇
𝑒𝑥𝑝  −

 𝑥 ′ 
2

4𝑇
−

 𝑦 ′ 
2

4𝑇
 ;  𝑥 ′ = 𝑥 −

𝑇, 𝑦′ = 𝑦 − 𝑇                                                               (15) 

This is similar to the diffusion approximation for the 

standard M/M/1 queue for 𝑝 > 1 and shows that the two 

queues decouple in this limit.  

 

Example 

Infants less than 1 year old undergoing 

ventricular septal defect or tetralogy of Fallot repair were 

randomized into 2 groups. Group 𝑇 (𝑛 = 7) received 

triiodothyronine (0.4 𝑔/𝑘𝑔) immediately before the 

start of cardiopulmonary bypass and again with 

myocardial reperfusion. Control (𝑁𝑇, 𝑛 = 7) patients 

received saline solution placebo or no treatment. Heart 

rate, systolic and diastolic blood pressure and peak 

pressure rate product (PRP) were generally maintained at 

steady levels in the control group over the first 24 hours 

postoperatively. In our study heart rate is examined first 

24 hours. Times in hours are taken as 𝑥 axis and the 
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heart rate in beats/min as 𝑦 axis. Heart rate after CPB for 

the patients receiving 𝑇3(𝑇) and control patients (𝑁𝑇). 

Time indices hours after termination of CPB. There are 

significant differences between groups occur at 1 and 3 

hours after CPB [11-14], [20] and [24-26]. 

 

 
 

Figure I. Heart rate after CPB for the patients receiving 

𝑇3(𝑇) and control patients (𝑁𝑇). Time indicates hours 

after termination of CPB. Significant differences 

between groups occur at 1 and 3 hours after CPB. 

 

 
 

Figure II. Heart rate after CPB for the patients receiving 

𝑇3(𝑇) and control patients (𝑁𝑇). Time indicates hours 

after termination of CPB. Significant differences 

between groups occur at 1 and 3 hours after CPB (Using 

Normal Distribution) 

 

Conclusion 

These data imply that (1) triiodothyronine in the 

prescribed dose prevents circulating triiodothyronine 

deficiencies and (2) triiodothyronine repletion promotes 

elevation in heart rate without concomitant decrease in 

systemic blood pressure. The diffusion approximation for 

the standard M/M/1 queue for 𝜌 > 1 also gives the same 

results as above. By using normal distribution (ND) the 

mathematical model gives the result as same as the 

medical report. The medical reports {Figure (1)} are 

beautifully fitted with the mathematical model {Figure 

(2)}; (𝑖. 𝑒) the results coincide with the mathematical 

and medical report.    
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