

International

Journal of Recent Research and Applied Studies

(Multidisciplinary Open Access Refereed e-Journal)

Weakly Axioms in Topological Spaces

Vivekananda Dembre

Assistant Professor, Department of Mathematics, Sanjay Ghodawat University, Kolhapur, Maharastra, India.

Received 6th February 2018, Accepted 1st April 2018

Abstract

The aim of this paper is to introduce and study two new classes of spaces, namely Weakly-normal and weakly-regular spaces and obtained their properties by utilizing weakly-closed sets.

Keywords: Weakly-closed set, Weakly-continuous function, Weakly-Separation axioms. **Mathematics subject classification (2010):** 54A05.

© Copy Right, IJRRAS, 2018. All Rights Reserved.

1 Introduction

S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil introduced the concept of g*-closed sets And S.S. Benchalli, T.D. Rayanagoudar and P.G. Patiland Shik John studied the concept of g*- preregular, g*- pre normal and obtained their properties by utilizing g*-closed sets.

2 Preliminaries

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c , and α -Cl(A), denote the Closure of A, Interior of A and Compliment of A and α -closure of A in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

(i)W-closed set[12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

(ii) Generalized closed set(briefly g-closed) [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2: A topological space X is said to be a (1)g-regular[10], if for each g-closed set F of X and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

(2) α - regular [4], if for each α - closed set F of X and each point $x \notin F$, there exists disjoint α - open sets U and V such that $F \subseteq V$ and $x \in U$.

Correspondence

Vivekananda Dembre

E-mail: vbdembre@gmail.com, Ph. +9177605 52192

(3) w-regular[12], if for each closed set F of X and each point $x \notin F$, there exists disjoint w-open sets U and V such that $F \subseteq U$ and $x \in V$.

Definition 2.3. A topological space X is said to be a

(1) g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

(2) α -normal [4], if for any pair of disjoint α – closed sets A and B, there exists dis-joint α -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

(3) w-normal [12], if for any pair of disjoint $\,w$ -closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.4: [2] A topological space X is called T_{weakly} - space if every weakly-closed set in it is closed set.

Definition 2.5:A map $f: (X, \tau) \longrightarrow (Y, \tau)$ is said to be (i)weakly-continuous map[11]if $f^{-1}(V)$ is a weakly-closed set of (X, τ) for every closed set V of (Y, τ) .

(ii)weakly-irresolute map[11]if f $^{-1}(V)$ is a weakly-closed set of (X, τ) for everyweakly-closed set V of (Y, τ) .

3Weakly Separation axioms in Regular Spaces

In this section, we introduce a new class of spaces called weakly-regular spaces using Weakly-closed sets and obtain some of their characterizations.

Definition 3.1. A topological space X is said to be weakly-regular if for each weakly closed set F and a point $x \notin F$, there exist disjoint open sets G and H such that $F \subseteq G$ and ϵH .

We have the following interrelationship between weaklyregularity and regularity.

Theorem 3.2. Every weakly-regular space is regular.

Proof: Let X be a weakly-regular space. Let F be any closed set in X and a point $x \notin X$ such that $x \notin F$. By [2], F is weakly-closed and $x \notin F$. Since X is a weakly-regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \notin H$. Hence X is a regular space.

Remark 3.3. If X is a regular space and T_{weakly} space, then X is weakly regular We have the following characterization.

Theorem 3.4. The following statements are equivalent for a topological space X

- (i) X is a weakly regular space
- (ii) For each $x \in X$ and each weakly-open neighbourhood U of x there exists an open neighbourhood N of x such that $cl(N)\subseteq U$.

Proof: (i) implies(ii): Suppose X is a weakly regular space. Let U be any weakly neighbour-hood of x. Then there exists weakly open set G such that $x \in G \subseteq U$. Now X –Gis weakly closed set and

 $x \notin X$ - G. Since X is weakly regular, there exist open sets Mand N such that X-G \subseteq M,

 $x \in N$ and $M \cap N = \varphi$ and so $N \subseteq X$ -M. Now $cl(N) \subseteq cl(X - M) = X - M$ and $X - M \subseteq M$.

This implies $X - M \subseteq U$. Therefore $cl(N) \subseteq U$.

(ii) implies(i): Let F be any weakly closed set in X and $x \in X$ -F and X - F is a Weakly-open and so X - F is a weakly-neighbourhood of x. By hypothesis, there exists an open neighbourhood N of x such that $x \in N$ and $cl(N)\subseteq X$ - F. This implies $F\subseteq X$ -cl(N) is an open set containing F and N \cap f(X - $cl(N)=\varphi$. Hence X is weakly-regular space.

We have another characterization of weakly-regularity in the following.

Theorem 3.5: A topological space X is weakly-regular if and only if for each weakly-closed set F of X and each x ϵX - F there exist open sets G and H of X such that x ϵ G,F \subseteq H and cl(G) \cap cl(H) = \emptyset .

Proof: Suppose X is weakly-regular space. Let F be a weakly-closed set in X with $x \notin F$. Then there exists open sets M and H of X such that $x \in M$, $F \subseteq H$ and $M \cap H = \emptyset$. This implies $M \cap cl(H) = \emptyset$. As X is weakly-regular, there exist open sets U and V such that $x \in U$, $cl(H) \subseteq V$ and $U \cap V = \emptyset$. so $cl(U) \cap V = \emptyset$. Let $G = M \cap U$, then G and H are open sets of X such that $x \in G$, $F \subseteq H$ and $cl(H) \cap cl(H) = \emptyset$.

Conversely, if for each weakly-closed set F of X and each $x \in X$ -F there exists opensets G and H such that $x \in G$, $F \subseteq H$ and $cl(H) \cap cl(H) = \emptyset$. This implies $x \in G$, $F \subseteq H$ and $G \cap H = \emptyset$. Hence X is weakly- regular.

Now we prove that weakly- regularity is a hereditary property.

Theorem 3.6. Every subspace of a weakly-regular space is weakly-regular.

Proof: Let X be a weakly- regular space. Let Y be a subspace of X. Let $x \in Y$ and F bea weakly-closed set in Y such that $x \notin F$. Then there is a closed set and so weakly-closed set A of X with $F = Y \cap A$ and $x \notin A$. Therefore we have $x \in X$, A is weakly-closed in X such that $x \notin A$. Since X is weakly- regular, there exist open sets G and H such that $x \in G$, $A \subseteq H$ and $G \cap H = \varphi$. Note that $Y \cap G$ and $Y \cap H$ are open sets in Y .Also $x \in G$ and $x \in Y$, which implies $x \in Y \cap G$ and $x \in Y \cap G$ and $x \in Y \cap G$. Hence Y is weakly-regular space.

We have yet another characterization of weaklyregularity in the following.

Theorem 3.7: The following statements about a topological space X are equivalent:

- (i) X is weakly-regular
- (ii) For each $x \in X$ and each weakly-open set U in X such that $x \in U$ there exists an open set V in X such that $x \in V \subseteq cl(V) \subseteq U$.
- (iii) For each point $x \in X$ and for each weakly-closed set A with $x \notin A$, there exists an open set V containing x such that $cl(V) \cap A = \varphi$.

Proof: (i)implies(ii): Follows from Theorem 3.5.

- (ii) implies(iii): Suppose (ii) holds. Let $x \in X$ and A be an weakly-closed set of X such that $x \notin A$. Then X A is a weakly-open set with $x \in X$ -A. By hypothesis, there exists an open set V such that $x \in V \subseteq cl(V) \subseteq X A$. That is $x \in V$, $V \subseteq cl(A)$ and $cl(A) \subseteq X A$. So $x \in V$ and $cl(V) \cap A = \varphi$.
- (iii) implies(i): Let $x \in X$ and U be an weakly-open set in X such that $x \in U$. Then X U is an weakly closed set and $x \notin X U$. Then by hypothesis, there exists an open set V containing x such that $cl(A) \cap (X U) = A$. Therefore $x \in V$, $cl(V) \subseteq U$ sox $e \in V \subseteq cl(V) \subseteq U$.

The invariance of weakly-regularity is given in the following.

Theorem 3.8: Let $f: X \to be$ a bijective, weakly-irresolute and open map from a weakly-regular space X into a topological space Y, then Y is weakly-regular.

Proof: Let $y \in Y$ and F be a weakly closed set in Y with $y \notin F$. Since F is weakly- irresolute, $f^{-1}(F)$ is weakly-closed set in X. Let f(x) = y so that $x = f^{-1}(y)$ and $x \notin f^{-1}(F)$. Again X is weakly-regular space, there exist open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq G$, $U \cap V = \varphi$. Since f is open and bijective, we have $y : f(U), F \subseteq f(V)$ and $f(U) \cap f(V) = f(U \cap V) = f(\varphi) = \varphi$. Hence Y is weakly-regular space.

Theorem 3.9. Let $f: X Y b \Rightarrow$ a bijective, weakly-closed and open map from atopological space X into a weakly-regular space Y. If X is T_{weakly} space, then X is weakly-regular.

Proof: Let $x \in X$ and F be an weakly-closed set in X with $x \notin F$. Since X is $T_{weakly}space$, F is closed in X. Then f(F) is weakly closed set with $f(x) \notin f(F)$ in Y, since f is weakly- closed. As Y is weakly-regular, there exist open sets U and V such that $x \in U$ and $f(x) \in U$ and $f(F) \subseteq V$. Therefore $x \in f^{-1}(U)$ and $F \subseteq f^{-1}(V)$. Hence X is weakly-regular space.

Theorem 3.10. If $f: X \longrightarrow Y$ is w-irresolute, continuous injection and Y is weakly-regular space, then X is weakly-regular.

Proof: Let F be any closed set in X with $x \notin F$. Since f is w-irresolute, f is weakly- closed set in Y and $f(x) \in f(F)$. Since Y is weakly- regular, there exists open sets U and V such that $f(x) \in U$ and

 $f(F) \subseteq V$. Thus $x \in f^{-1}(U), F \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \varphi$. Hence X is weakly- regular space.

4 Weakly Separation axioms in Normal Spaces

In this section, we introduce the concept of weakly normal spaces and study some of their characterizations.

Definition 4.1. A topological space X is said to be weakly-normal if for each pair of disjoint weakly-closed sets A and B in X, there exists a pair of disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$ We have the following interrelationship.

Theorem 4.2. Every weakly-normal space is normal.

Proof: Let X be a weakly-normal space. Let A and B be a pair of disjoint closed sets in X. Since A and B are weakly- closed sets in X. Since X is weakly-normal, there exists a pair of disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Hence X is normal.

Remark 4.3. The converse need not be true in general as seen from the following example.

Example 4.4. Let $X = Y = \{a,b,c,d\}, \tau = \{X, \emptyset, \{a\}, \{c\}, \{a,c\}, \{b,c,d\}\}$ Then the space X is normal but not weakly- normal, since the pair of disjoint weakly- closed sets namely, $A = \{a,d\}$ and $B = \{b,c\}$ for which there do not exists disjoint open sets Gand $A \subseteq A$ and $A \subseteq A$ and A

Remark 4.5.:If X is normal and T_{weakly} -space, then X is weakly-normal. Hereditary property of weakly-normality is given in the following.

Theorem 4.6. A weakly-closed subspace of a weakly-normal space is weakly-normal. We have the following characterization.

Theorem 4.7. The following statements for a topological space X are equivalent:

(i) X is weakly- normal

(ii) For each weakly- closed set A and each weakly- open set U such that

 $A{\subseteq}U,$ there exists an open set V such that $A{\subseteq}V{\subseteq}cl(V){\subseteq}U$

- (iii) For any weakly-closed sets A, B, there exists an open set V such that $A \subseteq V$ and $cl(V) \cap B = \varphi$.
- (iv) For each pair A, B of disjoint weakly-closed sets there exist open sets U and V such that $A \subseteq U, B \subseteq V$ and $cl(U) \cap cl(V) = \varphi$.

Proof: (i) implies(ii): Let A be a weakly-closed set and U be a weakly-open set such that $A \subseteq U$. Then A and X - U are disjoint weakly-closed sets in X. Since X is weakly-normal, there exists a pair of disjoint open sets V and W in X such that $A \subseteq V$ and $X - U \subseteq W$. Now $X - W \subseteq X - (X - U)$, so $X - W \subseteq U$ also $V \cap W = \varphi$.implies $V \subseteq X - W$, socl $(V) \subseteq Cl(X - W)$ which implies $Cl(V) \subseteq X - W$. Therefore $Cl(V) \subseteq X - W \subseteq U$. So $Cl(V) \subseteq U$. Hence $Cl(V) \subseteq U$.

(ii) implies(iii): Let A and B be a pair of disjoint weakly closed sets in X. Now $A \cap B = \varphi$, so $A \subseteq X$ -B, where A is weakly-closed an \subseteq d X - B is weakly-open . Then by (ii) there exists an open set V such that $A \subseteq V \subseteq cl(V) \subseteq X$ - B. Now $cl(V) \subseteq X$ - B implies $cl(V) \cap B = \varphi$. Thus $A \subseteq V$ and

 $cl(V) \cap B = \varphi$.

(iii) implies(iv): Let A and B be a pair of disjoint weakly-closed sets in X. Then from (iii)there exists an open set U such that $A \subseteq U$ and $cl(U) \cap B = \varphi$. Since cl(V) is closed, so weakly-closed set. Therefore cl(V) and B are disjoint weakly closed sets in X. By hypothesis, there exists an open set V such that $B \subseteq V$ and cl(U)

ther exists an open set V , such that $B\subseteq V$ and $cl(U)\cap cl(V)=\varnothing$.

(iv) implies(i): Let A and B be a pair of disjoint weakly-closed sets in X. Then from (iv)there exist an open sets U and V in X such that $A \subseteq U$, $B \subseteq V$ and $cl(U) \cap cl(V) = \varphi$. So $A \subseteq U$, $B \subseteq V$ and $U \cap V = \varphi$. Hence X weakly-normal.

Theorem 4.8. Let X be a topological space. Then X is weakly-normal if and only if for any pair A, B of disjoint weakly-closed sets there exist open sets U and V of X such that $A \subseteq U, B \subseteq V$ and $cl(U) \cap cl(V) = \varphi$.

Theorem 4.9. Let X be a topological space. Then the following are equivalent:

- (i) X is normal
- (ii) For any disjoint closed sets A and B, there exist disjoint weakly- open sets U and V such that $A \subseteq U, B \subseteq V$.
- (iii) For any closed set A and any open set V such that $A \subseteq V$, there exists an weakly-open set U of X such that $A \subseteq U \subseteq \alpha \operatorname{cl}(U) \subseteq V$.

Proof: (i) implies(ii): Suppose X is normal. Since every open set is weakly-open [2], (ii)follows.

(ii) implies(iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X - V are disjoint closed sets. By (ii), there exist disjoint weakly-

open sets U and W such that $A \subseteq U$ and $X - V \subseteq W$, since X - V is closed, so weakly- closed. From [2], we have $X - V \subseteq \alpha$ -int(W) and $U \cap \alpha$ -int(W) = φ . and so we have α -cl(U) $\cap \alpha$ -int(W) = φ . Hence $A \subseteq U \subseteq \alpha$ -cl(U)

 $\exists X - \alpha \text{-int}(W) \subseteq V. \text{ Thus } A \subseteq U \subseteq \alpha \text{-cl}(U) \subseteq V.$

(iii) implies(i): Let A and B be a pair of disjoint closed sets of X. Then $A \subseteq X - B$ and X - B is open. There exists a weakly- open set G of X such that $A \subseteq G \subseteq \alpha$ -cl(G) $\subseteq X$ -B.Since A is closed, it is w- closed, we have $A \subseteq \alpha$ -int(G). Take $U = \text{int}(\text{cl}(\text{int}(\alpha\text{-int}(G))))$

and $V = \operatorname{int}(\operatorname{cl}(\operatorname{int}(X - \alpha - \operatorname{cl}(G))))$. Then U and V are disjoint open sets of X such that $A \subseteq U$ and $B \subseteq V$. Hence X is normal.

We have the following characterization of weakly-normality and weakly-normality.

Theorem 4.10. Let X be a topological space. Then the following are equivalent:

- (i) X is α -normal.
- (ii) For any disjoint closed sets A and B, there exist disjoint weakly- open sets U and V such that $A\subseteq U, B\subseteq V$ and $U\cap V=\varphi$.

Proof: (i) implies(ii): Suppose X is α - normal. Let A and B be a pair of disjoint closedsets of X. Since X is α -normal, there exist disjoint α — open sets U and V such that $A \subseteq U$ and $B \subseteq V$ and $U \cap V = \varphi$.

(ii) implies(i):Let A and B be a pair of disjoint closed sets of X. The by hypothesis there exist disjoint weakly-open sets U and V such that $A \subseteq U$ and $B \subseteq V$ and $U \cap V = \varphi$. Since from [2], $A \subseteq \alpha$ -int U and $A \subseteq \alpha$ -int U and $A \subseteq \alpha$ -int U α -int V = α -int V = α -int X is α -normal.

Theorem 4.11. Let X bea α - normal, then the following hold good:

(i)For each closed set A and every weakly- open set B such that $A\subseteq B$ their exists a α open set U such that $A\subseteq U\subseteq \alpha\text{-cl}(U)\subseteq B$.

(ii) For every weakly-closed set A and every open set B containing A, there exist a α -open set U such that $A \subseteq U \subseteq \alpha$ -cl(U) $\subseteq B$.

References

- 1. S.P. Arya and T.M. Nour, Characterization of snormal spaces, Indian. J.Pure and Appl. Math., 21(8),(1990), 717-719.
- R.S.Wali, on some topics in general and fuzzy topological spaces Ph.d thesis Karnatak university dhaweaklyad(2007)
- 3. S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, g*- Pre Regular and g*-Pre Normal Spaces, Int. Math. Forum 4/48(2010) 2399-2408.
- S.S. Benchalli and P.G. Patil, Some New Continuous Maps in TopologicalSpaces, Journal of Advanced Studies in Topology 2/1-2 (2009) 53-63.
- R. Devi, Studies on Generalizations of Closed Maps and Homeomorpisms inTopological

- Spaces, Ph.D. thesis, Bharathiar University, Coimbatore (1994).
- 6. C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180.
- 7. N. Levine, Generalized Closed sets in Topology, Rendi. Circ. Math. Palermo 19/2(1970) 89-96.
- 8. S.N. Maheshwar and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci.Math. R.S. Roumanie 22 (1978) 27-28.
- 9. B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140-146.
- 10. T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci.Kochi Univ. Math 20 (1999)67-74.Journal of New Results in Science 5 (2014) 96-103 103.
- 11. M.S. John, A Study on Generalizations of Closed Sets and Continuous Maps inTopological and Bitopological spaces, Ph.D. Thesis, Bharathiar University, Coim-batore (2002).
- 12. R.S.Wali and Vivekananda Dembre;On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.
- 13. R.S.Wali and Vivekananda Dembre, Minimal weakly open sets and maximal weakly closed sets in topological spaces; International Journal of Mathematical Archieve; Vol-4(9)-Sept-2014.
- 14. R.S.Wali and Vivekananda Dembre, Minimal weakly closed sets and Maximal weakly open sets in topological spaces; International Research Journal of Pure Algebra; Vol-4(9)-Sept-2014.
- 15. R.S.Wali and Vivekananda Dembre, on semiminimal open and semi-maximal closed sets in topological spaces; Journal of Computer and Mathematical Science; Vol-5(9)-0ct-2014 (International Journal).
- 16. R.S.Wali and Vivekananda Dembre, on pre generalized pre regular weakly closed sets in topological spaces; Journal of Computer and Mathematical Science; Vol-6(2)-Feb-2015 (International Journal).
- 17. R.S.Wali and Vivekananda Dembre, on pre genearalized pre regular open sets and pre regular weakly neighbourhoods in topological spaces; Annals of Pure and Applied Mathematics"; Vol-10- 12 2015.
- 18. R.S.Wali and Vivekananda Dembre, on pre generalized pre regular weakly interior and pre generalized pre regular weakly closure in topological spaces, International Journal of Pure Algebra- 6(2),2016,255-259.
- R.S.Wali and Vivekananda Dembre ,on pre generalized pre regular weakly continuous maps in topological spaces, Bulletin of Mathematics

and Statistics Research Vol.4.Issue.1.2016 (January-March).

- 20. R.S.Wali andVivekananda Dembre, on Pregeneralized pre regular weakly irresolute and strongly pgprw-continuous maps in topological spaces, Asian Journal of current Engineering and Maths 5;2 March-April (2016)44-46.
- 21. R.S.Wali and Vivekananda Dembre, On Pgprwlocally closed sets in topological spaces,
- 22. International Journal of Mathematical Archive-7(3),2016,119-123.
- 23. R.S.Wali and Vivekananda Dembre, (τ_1, τ_2) pgprw-closed sets and open sets in Bitopological spaces,International Journal of Applied Research 2016;2(5);636-642.
- 24. R.S.Wali and Vivekananda Dembre, Fuzzy pgprw-continuous maps and fuzzy pgprw-irresolute in fuzzy topological spaces; International Journal of Statistics and Applied Mathematics 2016;1(1):01-04.
- 25. R.S.Wali and Vivekananda Dembre,On pgprw-closed maps and pgprw-open maps in Topological spaces;International Journal of Statistics and Applied Mathematics 2016;1(1);01-04.
- 26. Vivekananda Dembre, Minimal weakly homeomorphism and Maximal weakly homeomorphism in topological spaces, Bulletin of the Marathons Mathematical Society, Vol. 16, No. 2, December 2015, Pages 1-7.
- 27. Vivekananda Dembre and Jeetendra Gurjar, On semi-maximal weakly open and semi-minimal weakly closed sets in topological spaces, International Research Journal of Pure Algebra-Vol-4(10), Oct 2014.
- 28. Vivekananda Dembre and Jeetendra Gurjar, minimal weakly open map and maximal weakly open maps in topological spaces, International Research Journal of Pure Algebra-Vol.-4(10), Oct 2014; 603-606.
- 29. Vivekananda Dembre ,Manjunath Gowda and Jeetendra Gurjar, minimal weakly and maximal weakly continuous functions in topological spaces,International Research Journal of Pure Algebra-vol.-4(11), Nov–2014.
- 30. Arun kumar Gali and Vivekananda Dembre, minimal weakly generalized closed sets and maximalweakly generalized open sets in topological spaces, Journal of Computer and Mathematical sciences, Vol.6(6),328-335, June 2015. [I.F = 4.655].
- 31. R.S.Wali and Vivekananda Dembre; Fuzzy Pgprw-Closed Sets and Fuzzy Pgprw-Open Sets in Fuzzy Topological SpacesVolume 3, No. 3, March 2016; Journal of Global Research in Mathematical Archives.
- Vivekananda Dembre and Sandeep.N.Patil; On Contra Pre Generalized Pre Regular WeaklyContinuous Functions in Topological

- Spaces; IJSART Volume 3 Issue 12 DECEMBER 2017.
- 33. Vivekananda Dembre and Sandeep.N.Patil; On Pre Generalized Pre Regular Weakly Homeomorphism in Topological Spaces; Journal of Computer and Mathematical Sciences, Vol.9(1), 1-5 January 2018.
- 34. Vivekananda Dembre and Sandeep.N.Patil;on pre generalized pre regular weakly topological spaces;Journal of Global Research in Mathematical Archives volume 5, No.1, January 2018.
- 35. Vivekananda Dembre and Sandeep.N.Patil; Fuzzy Pre Generalized Pre Regular Weakly Homeomorphism in Fuzzy Topological Spaces;International Journal of Computer Applications Technology and Research Volume 7–Issue 02, 28-34, 2018, ISSN:-2319–8656.
- 36. Vivekananda Dembre and Sandeep.N.Patil; PGPRW-Locally Closed Continuous Maps in Topological Spaces; International Journal of Trend in Research and Development, Volume 5(1), January 2018.
- 37. Vivekananda Dembre and Sandeep.N.Patil; Rw-Separation Axioms in Topological Spaces; International Journal of Engineering Sciences & Research Technology; Volume 7(1): January, 2018.
- 38. Vivekananda Dembre and Sandeep.N.Patil; Fuzzy pgprw-open maps and fuzzy pgprw-closed maps in fuzzy topological spaces; International Research Journal of Pure Algebra-8(1), 2018, 7-12.
- 39. Vivekananda Dembre and Sandeep.N.Patil; Pgprw-Submaximal spaces in topological spaces; International Journal of applied research 2018; Volume 4(2): 01-02.